18 research outputs found

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Electrochemical Formation and Microstructure of Porous Gallium Phosphide

    No full text
    Electrochemical formation and microstructure of porous GaP have been investigated. Nanostructured porous GaP layers of thickness up to ≈ 20 μm were fabricated on n-type (111)-oriented crystalline c-GaP substrates. Studies of microstructure of porous GaP in dependence on electrolyte type and regimes of technological procedure have been carried out by scanning electron microscopy. The samples were characterized by spectroscopic ellipsometry in visible and near UV spectral range. The investigations have shown that the structure and optical response of porous GaP can be efficiently controlled by technological procedure of electrochemical formation. The shape and dimension of pores can be varied from nanometer-scaled cylindrical pores to GaP nanorods
    corecore