17,372 research outputs found
Extinction Map of Baade's Window
Recently Wo\'zniak \& Stanek (1996) proposed a new method to investigate
interstellar extinction, based on two band photometry, which uses red clump
stars as a means to construct the reddening curve. I apply this method to the
color-magnitude diagrams obtained by the Optical Gravitational Lensing
Experiment (OGLE) to construct an extinction map of region of
Baade's Window, with resolution of . Such a map should be
useful for studies of this frequently observed region of the Galactic bulge.
The map and software useful for its applications are available via {\tt
anonymous ftp}. The total extinction varies from to
within the field of view centered on (18:03:20.9,--30:02:06), i.e. . The
ratio is determined with this new method.Comment: revised version accepted for publication in ApJ Letters, 8 pages,
uuencoded PostScript with 4 figures included; complete paper available
through WWW at http://www.astro.princeton.edu/~library/prep.html; tables and
auxiliary software available at
ftp://www.astro.princeton.edu/stanek/Extinctio
Effect of Inclusion Rate of Silage With or Without the Presence of Alpha-Amylase on Feedlot Performance, Carcass Characteristics, and Efficiency Measures
The experimental objective was to determine the interactions of silage variety and inclusion level in cattle finishing diets on cattle performance and agronomic returns to cropland when fed to beef cattle
Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs
The role of star formation in luminous and ultraluminous infrared galaxies is
a hotly debated issue: while it is clear that starbursts play a large role in
powering the IR luminosity in these galaxies, the relative importance of
possible enshrouded AGNs is unknown. It is therefore important to better
understand the role of star forming gas in contributing to the infrared
luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground
and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as
an effective tracer for warm-dense molecular gas heated by active star
formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals,
LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter
Telescope on Mt. Graham, Arizona.
Our main results are the following: 1. We find a nearly linear relation
between the infrared luminosity and warm-dense molecular gas such that the
infrared luminosity increases as the warm-dense molecular gas to the power
0.92; We interpret this to be roughly consistent with the recent results of Gao
& Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128
L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km
s^-1)^-1. If this conversion factor is ~an order of magnitude less, as
suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our
objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap
Coherent versus Incoherent Light Scattering from a Quantum Dot
We analyze the light scattered by a single InAs quantum dot interacting with
a resonant continuous-wave laser. High resolution spectra reveal clear
distinctions between coherent and incoherent scattering, with the laser
intensity spanning over four orders of magnitude. We find that the fraction of
coherently scattered photons can approach unity under sufficiently weak or
detuned excitation, ruling out pure dephasing as a relevant decoherence
mechanism. We show how spectral diffusion shapes spectra, correlation
functions, and phase-coherence, concealing the ideal radiatively-broadened
two-level system described by Mollow.Comment: to appear in PRB 85, 23531
Recommended from our members
Materials for phantoms for terahertz pulsed imaging
Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption (similar to ∼100 cm(-1) at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images
Direct measurement of optical quasidistribution functions: multimode theory and homodyne tests of Bell's inequalities
We develop a multimode theory of direct homodyne measurements of quantum
optical quasidistribution functions. We demonstrate that unbalanced homodyning
with appropriately shaped auxiliary coherent fields allows one to sample
point-by-point different phase space representations of the electromagnetic
field. Our analysis includes practical factors that are likely to affect the
outcome of a realistic experiment, such as non-unit detection efficiency,
imperfect mode matching, and dark counts. We apply the developed theory to
discuss feasibility of observing a loophole-free violation of Bell's
inequalities by measuring joint two-mode quasidistribution functions under
locality conditions by photon counting. We determine the range of parameters of
the experimental setup that enable violation of Bell's inequalities for two
states exhibiting entanglement in the Fock basis: a one-photon Fock state
divided by a 50:50 beam splitter, and a two-mode squeezed vacuum state produced
in the process of non-degenerate parametric down-conversion.Comment: 18 pages, 7 figure
A Common Explanation for the Atmospheric, Solar-Neutrino and Double Beta Decay Anomalies
We make a number of small changes, including correcting an error in our
heavy-neutrino decay rate. None of our analysis is changed, either in substance
or detail.Comment: 25 pages, 6 Figures, McGill-93/1
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
Electronic states on a twin boundary of a d-wave superconductor
We show that an induced -wave harmonic in the superconducting gap of an
orthorhombic superconductor strongly affects the excitation
spectrum near a twinning plane. In particular, it yields bound states of zero
energy with areal density proportional to the relative weight of the -wave
component. An unusual scattering process responsible for the thermal
conductivity across the twin boundary at low temperatures is also identified.Comment: 4 pages, ReVTEX, 2 PS-figure
Magnon Exchange Mechanism of Ferromagnetic Superconductivity
The magnon exchange mechanism of ferromagnetic superconductivity
(FM-superconductivity) was developed to explain in a natural way the fact that
the superconductivity in , and is confined to the
ferromagnetic phase.The order parameter is a spin anti-parallel component of a
spin-1 triplet with zero spin projection. The transverse spin fluctuations are
pair forming and the longitudinal ones are pair breaking. In the present paper,
a superconducting solution, based on the magnon exchange mechanism, is obtained
which closely matches the experiments with and . The onset of
superconductivity leads to the appearance of complicated Fermi surfaces in the
spin up and spin down momentum distribution functions. Each of them consist of
two pieces, but they are simple-connected and can be made very small by varying
the microscopic parameters. As a result, it is obtained that the specific heat
depends on the temperature linearly, at low temperature, and the coefficient
is smaller in the superconducting phase than in the
ferromagnetic one. The absence of a quantum transition from ferromagnetism to
ferromagnetic superconductivity in a weak ferromagnets and is
explained accounting for the contribution of magnon self-interaction to the
spin fluctuations' parameters. It is shown that in the presence of an external
magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.
- …