156,930 research outputs found
Robust stability of two-dimensional uncertain discrete systems
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, We deal with the robust stability problem for linear two-dimensional (2-D) discrete time-invariant systems described by a 2-D local state-space (LSS) Fornasini-Marchesini (1989) second model. The class of systems under investigation involves parameter uncertainties that are assumed to be norm-bounded. We first focus on deriving the sufficient conditions under which the uncertain 2-D systems keep robustly asymptotically stable for all admissible parameter uncertainties. It is shown that the problem addressed can be recast to a convex optimization one characterized by linear matrix inequalities (LMIs), and therefore a numerically attractive LMI approach can be exploited to test the robust stability of the uncertain discrete-time 2-D systems. We further apply the obtained results to study the robust stability of perturbed 2-D digital filters with overflow nonlinearities
On designing H∞ filters with circular pole and error variance constraints
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we deal with the problem of designing a H∞ filter for discrete-time systems subject to error variance and circular pole constraints. Specifically, we aim to design a filter such that the H∞ norm of the filtering error-transfer function is not less than a given upper bound, while the poles of the filtering matrix are assigned within a prespecified circular region, and the steady-state error variance for each state is not more than the individual prespecified value. The filter design problem is formulated as an auxiliary matrix assignment problem. Both the existence condition and the explicit expression of the desired filters are then derived by using an algebraic matrix inequality approach. The proposed design algorithm is illustrated by a numerical example
Guest editorial foreword to the special issue on intelligent computation for bioinformatics
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it
Robust sliding mode design for uncertain stochastic systems based on H∞ control method
The official published version can be found at the link below.In this paper, the design problem of sliding mode control (SMC) is addressed for uncertain stochastic systems modeled by Itô differential equations. There exist the parameter uncertainties in both the state and input matrices, as well as the unmatched external disturbance. The key feature of this work is the integration of SMC method with H∞ technique such that the robust stochastic stability with a prescribed disturbance attenuation level can be achieved. A sufficient condition for the existence of the desired sliding mode controller is obtained via linear matrix inequalities. The reachability of the specified sliding surface is proven. Finally, a numerical simulation example is presented to illustrate the proposed method.This work was funded by The Royal Society of the U.K.;NNSF of China. Grant Numbers: 60674015, 60674089;The Technology Innovation Key Foundation of Shanghai Municipal Education Commission. Grant Number: 09ZZ60;Shanghai Leading Academic Discipline Project. Grant Number: B50
Particle simulation of lower hybrid waves in tokamak plasmas
Global particle simulations of the lower hybrid waves have been carried out
using fully kinetic ions and drift kinetic electrons with a realistic
electron-to-ion mass ratio. The lower hybrid wave frequency, mode structure,
and electron Landau damping from the electrostatic simulations agree very well
with the analytic theory. Linear simulation of the propagation of a lower
hybrid wave-packet in the toroidal geometry shows that the wave propagates
faster in the high field side than the low field side, in agreement with a ray
tracing calculation. Electromagnetic benchmarks of lower hybrid wave dispersion
relation are also carried out. Electromagnetic mode conversion are observed in
toroidal geometry, slow waves are launched at the plasma boundary and converts
to fast waves at the mode conversion layer, which is consistent with linear
theory.Comment: 8 pages, 11 figure
- …