The theoretical limit of the minimal magnetization switching field and the
optimal field pulse design for uniaxial Stoner particles are investigated. Two
results are obtained. One is the existence of a theoretical limit of the
smallest magnetic field out of all possible designs. It is shown that the limit
is proportional to the damping constant in the weak damping regime and
approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic
damping constant, this limit is more than ten times smaller than that of
so-called precessional magnetization reversal under a non-collinear static
field. The other is on the optimal field pulse design: If the magnitude of a
magnetic field does not change, but its direction can vary during a reversal
process, there is an optimal design that gives the shortest switching time. The
switching time depends on the field magnitude, damping constant, and magnetic
anisotropy. However, the optimal pulse shape depends only on the damping
constant.Comment: 4 pages, 4 figure