39,287 research outputs found

    Magnesium and magnesium alloys as degradable metallic biomaterials

    Get PDF
    Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium has been considered as it is essential to bodies and has a high biodegradation potential. For magnesium and its alloys to be used as biodegradable implant materials, their degradation rates should be consistent with the rate of healing of the affected tissue, and the release of the degradation products should be within the body's acceptable absorption levels. Conventional magnesium degrades rapidly, which is undesirable. In this study, biodegradation behaviours of high purity magnesium and commercial purity magnesium alloy AZ31 in both static and dynamic Hank's solution have been systematically investigated. The results show that magnesium purification and selective alloying are effective approaches to reduce the degradation rate of magnesium. In the static condition, the corrosion products accumulate on the materials surface as a protective layer, which results in a lower degradation rate than the dynamic condition. Anodised coating can significantly further reduce the degradation rate of magnesium. This study indicates that magnesium can be used as degradable implant materials as long as the degradation is controlled at a low rate. Magnesium purification, selective alloying and anodised coating are three effective approaches to reduce the rate of degradation

    Orthogonal learning particle swarm optimization

    Get PDF
    Particle swarm optimization (PSO) relies on its learning strategy to guide its search direction. Traditionally, each particle utilizes its historical best experience and its neighborhood’s best experience through linear summation. Such a learning strategy is easy to use, but is inefficient when searching in complex problem spaces. Hence, designing learning strategies that can utilize previous search information (experience) more efficiently has become one of the most salient and active PSO research topics. In this paper, we proposes an orthogonal learning (OL) strategy for PSO to discover more useful information that lies in the above two experiences via orthogonal experimental design. We name this PSO as orthogonal learning particle swarm optimization (OLPSO). The OL strategy can guide particles to fly in better directions by constructing a much promising and efficient exemplar. The OL strategy can be applied to PSO with any topological structure. In this paper, it is applied to both global and local versions of PSO, yielding the OLPSO-G and OLPSOL algorithms, respectively. This new learning strategy and the new algorithms are tested on a set of 16 benchmark functions, and are compared with other PSO algorithms and some state of the art evolutionary algorithms. The experimental results illustrate the effectiveness and efficiency of the proposed learning strategy and algorithms. The comparisons show that OLPSO significantly improves the performance of PSO, offering faster global convergence, higher solution quality, and stronger robustness

    Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice

    Get PDF
    We study topological properties of the Bose-Hubbard model with repulsive interactions in a one-dimensional optical superlattice. We find that the Mott insulator states of the single-component (two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiments, we show that the topological Chern number can be detected through measuring the density profiles of the bosonic atoms in a harmonic trap.Comment: 5 pages, published versio
    corecore