1,096 research outputs found

    Affine extension of noncrystallographic Coxeter groups and quasicrystals

    Full text link
    Unique affine extensions H^{\aff}_2, H^{\aff}_3 and H^{\aff}_4 are determined for the noncrystallographic Coxeter groups H2H_2, H3H_3 and H4H_4. They are used for the construction of new mathematical models for quasicrystal fragments with 10-fold symmetry. The case of H^{\aff}_2 corresponding to planar point sets is discussed in detail. In contrast to the cut-and-project scheme we obtain by construction finite point sets, which grow with a model specific growth parameter.Comment: (27 pages, to appear in J. Phys. A

    An Overview of Project Delivery Methods in Construction Industry

    Get PDF
    The selection of project delivery method is one of the factors that can influence the success of a construction project. Therefore, understanding each of the primary project delivery methods used in construction industry; Design-Bid-Build (DBB), Construction Manager at Risk (CM at Risk) and Design-Build (DB) are important before the decision-making. This paper is a theory based and the objectives are to develop a new definition of project delivery method by synthesizing the existing definitions and to describe the project delivery methods aforementioned. Their advantages, disadvantages and comparison in terms of delivery phase and performance are also presented. There is no project delivery method that appropriate to be used for any construction project therefore, the development of new ideal methods is important to achieve a successful construction project

    p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

    Get PDF
    The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity

    Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Full text link
    Composite detectors made of stainless steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment.Comment: Submitted to Eur.Phys.J. A; upgraded version correcting some typos and updating ref.

    Geophysical constraints on mirror matter within the Earth

    Full text link
    We have performed a detailed investigation of geophysical constraints on the possible admixture of mirror matter inside the Earth. On the basis of the Preliminary Reference Earth Model (PREM) -- the `Standard Model' of the Earth's interior -- we have developed a method which allows one to compute changes in various quantities characterising the Earth (mass, moment of inertia, normal mode frequencies etc.)due to the presence of mirror matter. As a result we have been able to obtain for the first time the direct upper bounds on the possible concentration of the mirror matter in the Earth. In terms of the ratio of the mirror mass to the Earth mass a conservative upper bound is 3.8×1033.8\times 10^{-3}. We then analysed possible mechanisms (such as lunar and solar tidal forces, meteorite impacts and earthquakes) of exciting mirror matter oscillations around the Earth centre. Such oscillations could manifest themselves through global variations of the gravitational acceleration at the Earth's surface. We conclude that such variations are too small to be observed. Our results are valid for other types of hypothetical matter coupled to ordinary matter by gravitation only (e.g. the shadow matter of superstring theories).Comment: 25 pages, in RevTeX, to appear in Phys.Rev.

    Is it still worth searching for lepton flavor violation in rare kaon decays?

    Full text link
    Prospective searches for lepton flavor violation (LFV) in rare kaon decays at the existing and future intermediate-energy accelerators are considered. The proposed studies are complementary to LFV searches in muon-decay experiments and offer a unique opportunity to probe models with approximately conserved fermion-generation quantum number with sensitivity superior to that in other processes. Consequently, new searches for LFV in kaon decays are an important and independent part of the general program of searches for lepton flavor violation in the final states with charged leptons.Comment: 30 pages, 10 figures. An extended version of the talk given at the Chicago Flavor Seminar, February 27, 2004. In the new version some misprints were corrected and some new data for LFV-processes were added. The main content of the paper was not changed. The paper is published in Yad. Fiz. 68, 1272 (2005

    Minimal Mass Matrices for Dirac Neutrinos

    Full text link
    We consider the possibility of neutrinos being Dirac particles and study minimal mass matrices with as much zero entries as possible. We find that up to 5 zero entries are allowed. Those matrices predict one vanishing mass state, CP conservation and U_{e3} either zero or proportional to R, where R is the ratio of the solar and atmospheric \Delta m^2. Matrices containing 4 zeros can be classified in categories predicting U_{e3} = 0, U_{e3} \neq 0 but no CP violation or |U_{e3}| \neq 0 and possible CP violation. Some cases allow to set constraints on the neutrino masses. The characteristic value of U_{e3} capable of distinguishing some of the cases with non-trivial phenomenological consequences is about R/2 \sin 2 \theta_{12}. Matrices containing 3 and less zero entries imply (with a few exceptions) no correlation for the observables. We outline models leading to the textures based on the Froggatt-Nielsen mechanism or the non-Abelian discrete symmetry D_4 \times Z_2.Comment: 32 pages, 3 figures. Comments and references added. To appear in JHE

    Lattice Analogues of N=2N=2 Superconformal Models via Quantum Group Truncation

    Full text link
    We obtain lattice models whose continuum limits correspond to N=2N=2 superconformal coset models. This is done by taking the well known vertex model whose continuum limit is the G×G/GG \times G/G conformal field theory, and twisting the transfer matrix and modifying the quantum group truncation. We find that the natural order parameters of the new models are precisely the chiral primary fields. The integrable perturbations of the conformal field theory limit also have natural counterparts in the lattice formulation, and these can be incorporated into an affine quantum group structure. The topological, twisted N=2N=2 superconformal models also have lattice analogues, and these emerge as an intermediate part of our analysis.Comment: 25 pages and 2 figure

    Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies

    Full text link
    New phenomenological models of Quantum Gravity have suggested that a Lorentz-Invariant discrete spacetime structure may become manifest through a nonstandard coupling of matter fields and spacetime curvature. On the other hand, there is strong experimental evidence suggesting that neutrino oscillations cannot be described by simply considering neutrinos as massive particles. In this manuscript we motivate and construct one particular phenomenological model of Quantum Gravity that could account for the so-called neutrino anomalies.Comment: For the proceedings of "Relativity and Gravitation: 100 Years after Einstein in Prague" (June 2012, Prague
    corecore