210,570 research outputs found

    Vision-based hand gesture interaction using particle filter, principle component analysis and transition network

    Get PDF
    Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test

    Experimental and computational investigation of confined laser-induced breakdown spectroscopy

    Get PDF
    This paper presents an experimental and computational study on laser-induced breakdown spectroscopy (LIBS) for both unconfined flat surface and confined cavity cases. An integrated LIBS system is employed to acquire the shockwave and plasma plume images. The computational model consists of the mass, momentum, and energy conservation equations, which are necessary to describe shockwave behaviors. The numerical predictions are validated against shadowgraphic images in terms of shockwave expansion and reflection. The three-dimensional (3D) shockwave morphology and velocity fields are displayed and discussed

    On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Robust stability serves as an important regulation mechanism in system biology and synthetic biology. In this paper, the robust stability analysis problem is investigated for a class of nonlinear delayed genetic regulatory networks with parameter uncertainties and stochastic perturbations. The nonlinear function describing the feedback regulation satisfies the sector condition, the time delays exist in both translation and feedback regulation processes, and the state-dependent Brownian motions are introduced to reflect the inherent intrinsic and extrinsic noise perturbations. The purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. By utilizing a new Lyapunov functional based on the idea of “delay fractioning”, we employ the linear matrix inequality (LMI) technique to derive delay-dependent sufficient conditions ensuring the robust stability of the gene regulatory networks. Note that the obtained results are formulated in terms of LMIs that can easily be solved using standard software packages. Simulation examples are exploited to illustrate the effectiveness of the proposed design procedures

    Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method

    Get PDF
    The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313
    corecore