210,570 research outputs found
Vision-based hand gesture interaction using particle filter, principle component analysis and transition network
Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test
Experimental and computational investigation of confined laser-induced breakdown spectroscopy
This paper presents an experimental and computational study on laser-induced breakdown spectroscopy (LIBS) for both unconfined flat surface and confined cavity cases. An integrated LIBS system is employed to acquire the shockwave and plasma plume images. The computational model consists of the mass, momentum, and energy conservation equations, which are necessary to describe shockwave behaviors. The numerical predictions are validated against shadowgraphic images in terms of shockwave expansion and reflection. The three-dimensional (3D) shockwave morphology and velocity fields are displayed and discussed
On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Robust stability serves as an important regulation mechanism in system biology and synthetic biology. In this paper, the robust stability analysis problem is investigated for a class of nonlinear delayed genetic regulatory networks with parameter uncertainties and stochastic perturbations. The nonlinear function describing the feedback regulation satisfies the sector condition, the time delays exist in both translation and feedback regulation processes, and the state-dependent Brownian motions are introduced to reflect the inherent intrinsic and extrinsic noise perturbations. The purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. By utilizing a new Lyapunov functional based on the idea of “delay fractioning”, we employ the linear matrix inequality (LMI) technique to derive delay-dependent sufficient conditions ensuring the robust stability of the gene regulatory networks. Note that the obtained results are formulated in terms of LMIs that can easily be solved using standard software packages. Simulation examples are exploited to illustrate the effectiveness of the proposed design procedures
Recommended from our members
Robust sliding mode design for uncertain stochastic systems based on H∞ control method
The official published version can be found at the link below.In this paper, the design problem of sliding mode control (SMC) is addressed for uncertain stochastic systems modeled by Itô differential equations. There exist the parameter uncertainties in both the state and input matrices, as well as the unmatched external disturbance. The key feature of this work is the integration of SMC method with H∞ technique such that the robust stochastic stability with a prescribed disturbance attenuation level can be achieved. A sufficient condition for the existence of the desired sliding mode controller is obtained via linear matrix inequalities. The reachability of the specified sliding surface is proven. Finally, a numerical simulation example is presented to illustrate the proposed method.This work was funded by The Royal Society of the U.K.;NNSF of China. Grant Numbers: 60674015, 60674089;The Technology Innovation Key Foundation of Shanghai Municipal Education Commission. Grant Number: 09ZZ60;Shanghai Leading Academic Discipline Project. Grant Number: B50
Recommended from our members
A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, the synchronization problem is investigated for a class of stochastic complex networks with time delays. By utilizing a new Lyapunov functional form based on the idea of ‘delay fractioning’, we employ the stochastic analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited to demonstrate the advantage and applicability of the proposed result.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method
The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach
State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays
Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313
- …