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Abstract

In this paper, the synchronization problem is investigated for a class of stochastic complex networks with time

delays. By utilizing a new Lyapunov functional form based on the idea of ‘delay fractioning’, we employ the stochastic

analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that

guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic

disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be

solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the

conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited

to demonstrate the advantage and applicability of the proposed result.
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I. Introduction

Over the last few years, the complex networks have received increasing research attention from all fields

of the basic science and the technological practice [1–10]. Complex networks can have applications in almost

everywhere of the real world with examples including genetic networks, the Internet, and social networks etc.

There have been a rich body of literature on analyzing complex networks, and one of the most significant

dynamical behaviors of complex networks that has been widely investigated is the synchronization motion of

its dynamical elements.

In practice, the information transmission within complex networks is in general not instantaneous since the

signals traveling speed is limited. This fact gives rise to the time delays that may cause undesirable dynamic
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network behaviors such as oscillation and instability. It is worth pointing out that, among most existing results,

the network synchronization problem has been predominantly studied for deterministic complex networks with

or without delays, see [2–5,9–14] and the references therein. For example, the global synchronization problem

for complex networks without delays has been explored in [2, 4, 5]; the network synchronization problem of

complex networks with delays or coupling delays has been studied in [3,10,12,14]; and the literature [9,11,13]

has been concerned with the adaptive synchronization problem of some dynamical networks.

In a real world, the signal transfer within complex networks could be perturbed randomly from the release

of probabilistic causes such as neurotransmitters [15] and packet dropouts [16]. When analyzing the dynamical

behaviors of complex networks, the obtained results are often largely affected by the stochastic disturbances.

Subsequently, the synchronization problem for stochastic networks has begun to receive some initial research

interests. In [17–21], the synchronization problems have been intensively investigated for delayed complex

(or neural) networks with stochastic disturbances, where the criteria ensuring the synchronization among

networks have been derived mainly based on the Lyapunov approach that is capable of coping the time-

delays. Therefore, One of the main issues aroused here is how to reduce the possible conservatism induced

by the introduction of the Lyapunov functional. Recently, the so-called ‘delay fractioning’ approach has been

developed in [22, 23] that is shown to lead to much less conservative results than most existing literature.

To the best of the authors’ knowledge, the synchronization problem for stochastic delayed complex networks

(SDCN) has not been fully investigated, and there still exists much room for further research such as the

reduction of conservatism by using latest analysis techniques.

In this paper, we investigate the synchronization problem in an array of identical SDCN with time delays.

By employing the properties of Kronecker product [24] and the stochastic analysis techniques [25, 26] com-

bined with the ‘delay fractioning’ approach [22, 23], we construct a novel Lyapunov functional to attain new

synchronization criteria, which are formulated in the form of linear matrix inequalities (LMIs) [27]. Note that

the LMIs can be solved by using the standard numerical software. Our result is shown to be less conservative

as the conservatism could be reduced when the number of delay fractions becomes bigger.

The remainder of this paper is organized as follows. In Section II, a stochastic complex network model

with constant time delays is proposed and some preliminaries are briefly outlined. In Section III, by utilizing

the approach of ‘delay fractioning’ and the Lyapunov functional method, we conduct the stochastic analysis

to obtain delay-dependent sufficient criteria in terms of LMIs, so as to ensure the considered stochastic

complex network with stochastic disturbances to be globally synchronized in the mean square. In Section IV,

a simulation example is provided to show the advantage of the obtained result. The conclusions are finally

drawn in Section V.

Notations: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean space

and the set of all n×m real matrices. P > 0 means that matrix P is real, symmetric and positive definite. I

and 0 denote the identity matrix and the zero matrix with compatible dimensions, respectively; and diag{· · · }

stands for a block-diagonal matrix. The superscript “T” stands for matrix transposition and the asterisk “∗”
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in a matrix is used to represent the term which is induced by symmetry. The Kronecker product of matrices

Q ∈ R
m×n and R ∈ R

p×q is a matrix in R
mp×nq and denoted as Q ⊗ R. We let τ > 0 and C([−τ, 0]; Rn)

denote the family of continuous functions ϕ from [−τ, 0] to R
n with the norm |ϕ| = sup−τ≤θ≤0 ‖ϕ(θ)‖,

where ‖ · ‖ is the Euclidean norm in R
n. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability space

with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -null sets and is

right continuous). Denote by L
p
F0

([−τ, 0]; Rn) the family of all F0-measurable C([−τ, 0]; Rn)-valued random

variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0 E|ξ(θ)|p < ∞, where E{·} stands for the mathematical

expectation operator with respect to the given probability measure P . Sometimes, the arguments of a function

will be omitted in the analysis when no confusion arises.

II. Problem formulation and preliminaries

Consider the following array of identical delayed complex networks with stochastic disturbances:

dxi(t) =



Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ)) +
N
∑

j=1

G
(1)
ij Γ1xj(t) +

N
∑

j=1

G
(2)
ij Γ2xj(t − τ)



 dt

+σi(t, xi(t), xi(t − τ))dω(t), i = 1, 2, . . . , N, (1)

where xi(t) = (xi1(t), . . . , xin(t))T ∈ R
n is the state vector of the ith network at time t; A denotes a known

connection matrix; B and Bτ denote, respectively, the connection weight matrix and the delayed connection

weight matrix; Γ1, Γ2 ∈ R
n×n are matrices describing the inner-coupling between the subsystems at time t

and t−τ , respectively; G(1) = (G
(1)
ij )N×N and G(2) = (G

(2)
ij )N×N are the outer-coupling configuration matrices

representing the coupling strength and the topological structure of the complex networks. The constant τ

stands for the constant time delay, which satisfies

0 ≤ τ ≤ h.

Furthermore, σi(·, ·, ·) : R×R
n×R

n → R
n is the noise intensity function vector, and ω(t) is a scalar Brownian

motions defined on (Ω,F ,P) satisfying

E{dω(t)} = 0 and E{[dω(t)]2} = dt. (2)

Finally, f(xi(t)) = (f1(xi1(t)), . . . , fn(xin(t)))T is an unknown but sector-bounded nonlinear function.

Throughout this paper, the following assumptions are needed.

Assumption 1: [3] The outer-coupling configuration matrices of the complex networks (1) satisfy

G
(q)
ij = G

(q)
ji ≥ 0 (i 6= j), G

(q)
ii = −

N
∑

j=1,j 6=i

G
(q)
ij (q = 1, 2; i, j = 1, 2, . . . , N). (3)

Assumption 2: [15, 28] For ∀u, v ∈ R
n, the nonlinear function f(·) is assumed to satisfy the following

sector-bounded condition

(

f(u) − f(v) − Lf (u − v)

)T(

f(u) − f(v) − Lf (u − v)

)

≤ 0, (4)



4

where Lf and Lf are real constant matrices with Lf − Lf being symmetric and positive definite.

Remark 1: The nonlinear function f(·) satisfying Assumption 2 is said to belong to the sector [Lf , Lf ] and

it should be pointed out that this nonlinear condition is more general than the usually Lipschitz conditions

which have been widely used in [10,17,20].

Assumption 3: The noise intensity function vector σi : R×R
n ×R

n → R
n satisfies the Lipschitz condition,

i.e., there exist constant matrices W1 and W2 of appropriate dimensions such that the following inequality

(

σi(t, u1, v1) − σj(t, u2, v2)
)T (

σi(t, u1, v1) − σj(t, u2, v2)
)

≤ ‖W1(u1 − u2)‖
2 + ‖W2(v1 − v2)‖

2 (5)

holds for all i, j = 1, 2, . . . , N and u1, v1, u2, v2 ∈ R
n.

Let

x(t) =
(

xT
1 (t), xT

2 (t), . . . , xT
N (t)

)T
,

F (x(t)) =
(

fT (x1(t)), f
T (x2(t)), . . . , f

T (xN (t))
)T

,

F (x(t − τ)) =
(

fT (x1(t − τ)), fT (x2(t − τ)), . . . , fT (xN (t − τ))
)T

,

σ(t) =
(

σT
1 (t, x1(t), x1(t − τ)), σT

2 (t, x2(t), x2(t − τ)), . . . , σT
N (t, xN (t), xN (t − τ))

)T
.

With the Kronecker product ‘⊗’ for matrices, system (1) can be recast into

dx(t) =
[

(IN ⊗ A + G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t − τ) + (IN ⊗ B)F (x(t))

+(IN ⊗ Bτ )F (x(t − τ))] dt + σ(t)dω(t). (6)

The initial conditions associated with system (1) are given by

xi(s) = ϕi(s), −h ≤ s ≤ 0, i = 1, 2, . . . , N (7)

where ϕi(·) ∈ L2
F0

([−h, 0], Rn), and the corresponding state trajectory is denoted as xi(t, ϕ1, ϕ2, . . . , ϕN ).

Before stating the main results, some definitions and lemmas are introduced.

Definition 1: The set S = {x = (x1(s), x2(s), . . . , xN (s)) : xi(s) ∈ L2
F0

([−h, 0], Rn), xi(s) = xj(s), 1 ≤

i, j ≤ N} is called the synchronization manifold of network (1) or (6).

Definition 2: The synchronization manifold S is said to be globally asymptotically stable in the mean square

(in other words, the delayed complex network (1) is globally asymptotically synchronized in the mean square)

if, for all ϕi(·), ϕj(·) ∈ L2
F0

([−h, 0], Rn), the following holds:

lim
t→∞

E{||xi(t, ϕi) − xj(t, ϕj)||
2} = 0, 1 ≤ i < j ≤ N. (8)

Lemma 1: [24] The Kronecker product has the following properties:

(1) (αA) ⊗ B = A ⊗ (αB);

(2) (A + B) ⊗ C = A ⊗ C + B ⊗ C;

(3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD);

(4) (A ⊗ B)T = AT ⊗ BT .
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Lemma 2: [29] For scalar r > 0, let M ∈ R
m×m be a positive semi-definite matrix and ρ : [0, r] → R

m be

a vector function. If the integrations concerned are well defined, then the following inequality holds:

r

∫ r

0
ρT (s)Mρ(s)ds ≥

(
∫ r

0
ρ(s)ds

)T

M

(
∫ r

0
ρ(s)ds

)

.

Lemma 3: Let U = (αij)N×N , P ∈ R
n×n, x = (xT

1 , xT
2 , ..., xT

N )T where xi = (xi1, xi2, . . . , xin)T ∈ R
n and

y = (yT
1 , yT

2 , ..., yT
N )T where yi = (yi1, yi2, . . . , yin)T ∈ R

n (k = 1, 2, ..., N). If U = UT and each row sum of U

is zero, then

xT (U ⊗ P )y = −
∑

1≤i<j≤N

αij(xi − xj)
T P (yi − yj).

III. Main Results and proofs

In this section, we are in the position to present our main results for synchronization criteria of the delayed

complex networks with stochastic disturbances.

Theorem 1: Consider the complex network (1) with time-delay τ ∈ (0, h]. For a given an integer r ≥ 1, if

there exist 2(r + 1) matrices P1 > 0, P2 > 0, Qk > 0, Rk > 0, r + 1 matrices Mk, S, and r + 1 positive scalars

λ, ǫk (k = 1, 2, . . . , r) such that the following LMIs hold for all 1 ≤ i < j ≤ N :

P1 < λI, (9)

Θij = W T
Q Q̃WQ + W T

R R̃WR + W T
S ΛijWS + W T

ε ΞWε < 0, (10)

where

WQ =





Irn×rn 0rn×n 0rn×(2rn+2n)

0rn×n Irn×rn 0rn×(2rn+2n)



 , WR =





0rn×(rn+n) Irn×rn 0rn×(rn+2n)

0rn×(rn+2n) Irn×rn 0rn×(rn+n)



 ,

Wε =









Irn×rn 0rn×(2rn+3n)

0rn×(rn+n) Irn×rn 0rn×(rn+2n)

0rn×(2rn+2n) Irn×rn 0rn×n









, WS =





















In×n 0n×(3rn+2n)

0n×rn In×n 0n×(2rn+2n)

0n×(rn+n) In×n 0n×(2rn+n)

0n×(2rn+n) In×n 0n×(rn+n)

0n×(3rn+2n) In×n





















,

Q̃ =





Q + M + MT −M

∗ −Q



 , R̃ =





R

−R



 , Ξ =









−ε ⊗ L̂ ε ⊗ L̆ −M

∗ −2ε ⊗ In 0

∗ ∗ − r
h
P2









,
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Λij =





















Λ
(11)
ij −NG

(2)
ij P1Γ2 P1B P1Bτ AT ST − NG

(1)
ij ΓT

1 ST

∗ λW T
2 W2 0 0 −NG

(2)
ij ΓT

2 ST

∗ ∗ 0 0 BTST

∗ ∗ ∗ 0 BT
τ ST

∗ ∗ ∗ ∗ hP2 − S − ST





















,

Λ
(11)
ij = P1A + AT P1 − NG

(1)
ij (P1Γ1 + ΓT

1 P1) + λW T
1 W1,

L̂ = LT
f Lf + Lf T

Lf , L̆ = (LT
f + Lf T

),P2 = Ir ⊗ P2, ε = diag{ǫ1, ǫ2, . . . , ǫr},

Q = diag{Q1, Q2, . . . , Qr},R = diag{R1, R2, . . . , Rr},M = diag{M1,M2, . . . ,Mr},

then the asymptotic synchronization in the mean square in (8) is achieved.

Proof: By setting

y(t) = (IN ⊗ A + G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t − τ) + (IN ⊗ B)F (x(t)) + (IN ⊗ Bτ )F (x(t − τ)), (11)

system (6) becomes

dx(t) = y(t)dt + σ(t)dω(t).

Based on the ‘delay-fractioning’ idea, we introduce the following new Lyapunov functional candidate for

the complex network (1) (or (6)):

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (12)

where

V1(t) = xT (t)(U ⊗ P1)x(t),

V2(t) =

∫ 0

−τ

∫ t

t+θ

yT (s)(U ⊗ P2)y(s)dθds,

V3(t) =
r
∑

k=1

∫ t− k−1

r
τ

t− k

r
τ

xT (s)(U ⊗ Qk)x(s)ds,

V4(t) =

r
∑

k=1

∫ t− k−1

r
τ

t− k

r
τ

F T (x(s))(U ⊗ Rk)F (x(s))ds,

with r ≥ 1 (number of fractions) being is an integer and

U =















N − 1 −1 · · · −1

−1 N − 1 · · · −1

· · · · · · · · · · · ·

−1 −1 · · · N − 1















N×N

.
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Letting L be the weak infinitesimal operator of the stochastic process {xt = x(t + s)|t ≥ 0,−h ≤ s ≤ 0}

along the trajectories of the network (1) (or (6)), then one has

L V1(t) = 2xT (t)(U ⊗ P1)y(t) + σT (t)(U ⊗ P1)σ(t)

= 2xT (t)(U ⊗ P1)
[

(IN ⊗ A + G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t − τ)

+(IN ⊗ B)F (x(t)) + (IN ⊗ Bτ )F (x(t − τ))
]

+ σT (t)(U ⊗ P1)σ(t); (13)

L V2(t) = τyT (t)(U ⊗ P2)y(t) −

∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds

≤ hyT (t)(U ⊗ P2)y(t) −

∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds; (14)

L V3(t) = xT (t)(U ⊗ Q1)x(t) − xT (t − τ)(U ⊗ Qr)x(t − τ)

−

r−1
∑

l=1

(

xT (t −
l

r
τ)(U ⊗ Ql − U ⊗ Ql+1)x(t −

l

r
τ)

)

=

















x(t)

x(t − 1
r
τ)

...

x(t − r−1
r

τ)

















T














U ⊗ Q1

U ⊗ Q2

· · ·

U ⊗ Qr































x(t)

x(t − 1
r
τ)

...

x(t − r−1
r

τ)

















−

















x(t − 1
r
τ)

x(t − 2
r
τ)

...

x(t − τ)

















T














U ⊗ Q1

U ⊗ Q2

· · ·

U ⊗ Qr































x(t − 1
r
τ)

x(t − 2
r
τ)

...

x(t − τ)

















; (15)

L V4(t) =

















F (x(t))

F (x(t − 1
r
τ))

...

F (x(t − r−1
r

τ))

















T














U ⊗ R1

U ⊗ R2

· · ·

U ⊗ Rr































F (x(t))

F (x(t − 1
r
τ))

...

F (x(t − r−1
r

τ))

















−

















F (x(t − 1
r
τ))

F (x(t − 2
r
τ))

...

F (x(t − τ))

















T














U ⊗ R1

U ⊗ R2

· · ·

U ⊗ Rr































F (x(t − 1
r
τ))

F (x(t − 2
r
τ))

...

F (x(t − τ))

















. (16)
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From Lemma 2, it follows that

−

∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds = −
r
∑

k=1

∫ t− k−1

r
τ

t− k

r
τ

yT (s)(U ⊗ P2)y(s)ds (17)

≤ −
r
∑

k=1



(
τ

r
)−1

(

∫ t− k−1

r
τ

t− k

r
τ

y(s)ds

)T

(U ⊗ P2)

(

∫ t− k−1

r
τ

t− k

r
τ

y(s)ds

)





≤ −
r

h

r
∑

k=1





(

∫ t− k−1

r
τ

t− k

r
τ

y(s)ds

)T

(U ⊗ P2)

(

∫ t− k−1

r
τ

t− k

r
τ

y(s)ds

)



 .

From the Newton-Leibniz formula, we have that for any matrices Mk(k = 1, 2, . . . , r),

2xT (t −
k − 1

r
τ)(U ⊗ Mk)

(

x(t −
k − 1

r
τ) − x(t −

k

r
τ) −

∫ t− k−1

r
τ

t− k

r
τ

y(s)ds −

∫ t− k−1

r
τ

t− k

r
τ

σ(s)dω(s)

)

= 0. (18)

In addition, for any matrix S, the following is true:

Π = 2yT (t)(U ⊗ S)
[

(IN ⊗ A + G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t − τ)

+ (IN ⊗ B)F (x(t)) + (IN ⊗ Bτ )F (x(t − τ)) − y(t)
]

= 0. (19)

Noting that UG(i) = G(i)U = NG(i)(i = 1, 2), for any matrix H with appropriate dimension, we obtain

(U ⊗ H)(G(i) ⊗ Γi) = (UG(i)) ⊗ (HΓi) = (NG(i)) ⊗ (HΓi). (20)

Combining (13)-(19) together with the property (20), we have

L V (t)

=
∑

1≤i<j≤N

[

(xi(t) − xj(t))
T

(

P1A + AT P1 − NG
(1)
ij (P1Γ1 + ΓT

1 P1)

)

(xi(t) − xj(t))

+2(xi(t) − xj(t))
T

(

P1B(f(xi(t)) − f(xj(t))) + P1Bτ (f(xi(t − τ)) − f(xj(t − τ)))

−NG
(2)
ij P1Γ2(xi(t − τ) − xj(t − τ))

)

+ (yi(t) − yj(t))
T (hP2 − S − ST )(yi(t) − yj(t))

+ (σi(t, xi(t), xi(t − τ)) − σj(t, xj(t), xj(t − τ)))T P1 (σi(t, xi(t), xi(t − τ)) − σj(t, xj(t), xj(t − τ)))

−2(Υi(t) − Υj(t))
TM

(

(Υi(t −
1

r
τ) − Υj(t −

1

r
τ)) + (Pi(t) − Pj(t)) + (Ωi(t) − Ωj(t))

)

−
r

h
(Pi(t) − Pj(t))

T P2(Pi(t) − Pj(t)) + 2((xi(t)) − xj(t))
T (AT ST − NG

(1)
ij ΓT

1 ST )(yi(t) − yj(t))

−2((xi(t − τ)) − xj(t − τ))T NG
(2)
ij ΓT

2 ST (yi(t) − yj(t)) + 2(f(xi(t)) − f(xj(t)))
T BT ST (yi(t) − yj(t))

+2(f(xi(t − τ)) − f(xj(t − τ)))T BT
τ ST (yi(t) − yj(t)) + (Υi(t) − Υj(t))

T (Q + M + MT )(Υi(t) − Υj(t))

−(Υi(t −
1

r
τ) − Υj(t −

1

r
τ))T Q(Υi(t −

1

r
τ) − Υj(t −

1

r
τ)) + (Fi(t) − Fj(t))

T R(Fi(t) − Fj(t))

−(Fi(t −
1

r
τ) − Fj(t −

1

r
τ)TR(Fi(t −

1

r
τ) − Fj(t −

1

r
τ))

]

, (21)
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where P2,Q,R,M are defined in (10), and

Υi(t) =

















xi(t)

xi(t −
1
r
τ)

...

xi(t −
r−1

r
τ)

















,Fi(t) =

















f(xi(t))

f(xi(t −
1
r
τ))

...

f(xi(t −
r−1

r
τ))

















,Pi(t) =

















∫ t

t− 1

r
τ
yi(s)ds

∫ t− τ

r

t− 2

r
τ
yi(s)ds

...
∫ t− r−1

r
τ

t−τ yi(s)ds

















,

Ωi(t) =

















∫ t

t− 1

r
τ
σ(s)dω(s)

∫ t− 1

r
τ

t− 2

r
τ

σ(s)dω(s)

...
∫ t− r−1

r
τ

t−τ σ(s)dω(s)

















,

According to (5) and (9), it is clear that

(σi(t, xi(t), xi(t − τ)) − σj(t, xj(t), xj(t − τ)))T P1 (σi(t, xi(t), xi(t − τ)) − σj(t, xj(t), xj(t − τ))) (22)

≤ λ
[

(xi(t) − xj(t))
T W T

1 W1(xi(t) − xj(t)) + (xi(t − τ) − xj(t − τ))T W T
2 W2(xi(t − τ) − xj(t − τ))

]

.

Moreover, from Assumption 2, for ǫk > 0(k = 1, 2, · · · , r), it can be derived that

ǫk





xi(t −
k−1

r
τ) − xj(t −

k−1
r

τ)

f(xi(t −
k−1

r
τ)) − f(xj(t −

k−1
r

τ)





T 



L̂ −L̆

∗ 2I









xi(t −
k−1

r
τ) − xj(t −

k−1
r

τ)

f(xi(t −
k−1

r
τ) − f(xj(t −

k−1
r

τ)



 ≤ 0, (23)

with L̂ = LT
f Lf + Lf T

Lf , L̆ = (LT
f + Lf T

). Obviously, one has from (23) that

(Υi(t) − Υj(t))
T

(

2(ε ⊗ L̆)(Fi(t) − Fj(t)) − (ε⊗)L̂(Υi(t) − Υj(t))

)

−(Fi(t) − Fj(t))
T (2ε ⊗ In)(Fi(t) − Fj(t)) ≥ 0, (24)

with ε = diag{ǫ1, ǫ2, . . . , ǫr} > 0.

Using (22) and (24), we obtain

E{L V (t)} ≤
∑

1≤i<j≤N

ξT
ij(t)Θijξij(t) (25)

where

ξij(t) =



























Υi(t) − Υj(t)

xi(t − τ) − xj(t − τ)

Fi(t) − Fj(t)

f(xi(t − τ)) − f(xj(t − τ))

Pi(t) − Pj(t)

yi(t) − yj(t)



























and Θij is defined in (10).
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From (10), it is guaranteed that all the subsystems in (1) are asymptotically synchronized for any fixed

time delay τ ∈ (0, h]. The proof is completed.

Remark 2: Based on the ‘delay fractioning’ method, we construct a more general Lyapunov functional to

analyze the synchronization problem of the delayed complex networks. The new delay-dependent conditions

presented in Theorem 1 are formulated in the form of LMIs, which can be solved by the LMI toolbox in

Matlab. Moreover, the conservatism of the results in Theorem 1 can be reduced by increasing the number of

fractions of the time delay.

IV. A Numerical example

In this section, we present a simulation example so as to illustrate the advantage and usefulness of our main

results.

Example 1: Consider a coupled complex network (26) consisting of three identical models. The state equa-

tions of the entire array are

dxi(t) =



Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ)) +

3
∑

j=1

G
(1)
ij Γ1xj(t) +

3
∑

j=1

G
(2)
ij Γ2xj(t − τ)



 dt

+σ(t, xi(t), xi(t − τ)dω(t); (26)

where xi(t) = (xi1(t), xi2(t))
T (i = 1, 2, 3) is the state vector of the ith subsystem. Choose the coupling

matrices G(1), G(2) and the linking matrices Γ1, Γ2 as

G(1) =









−2 1 1

1 −2 1

1 1 −2









, G(2) =









−3 1 2

1 −2 1

2 1 −3









; Γ1 =





0.5 0

0.1 0.5



 , Γ2 =





0.5 0.1

0 0.4



 .

The other parameters are as follows:

A =





−2 0.2

0.2 −1.6



 , B =





0.6 −0.1

−0.3 0.5



 , Bτ =





−0.5 −0.1

0.2 −1.5



 .

The nonlinear function is given by f(y(t)) = (f1(y1(t)), f2(y2(t)))
T with fi(yi) = tanh(yi) (i = 1, 2) and the

noise intensity function vector σ(·, ·, ·) is of the following form:

σ(t, y(t), y(t − τ)) =





−0.05 0.05 0.1 −0.1

0.05 −0.05 0.1 −0.1









y(t)

y(t − τ)



 .

Obviously, the nonlinear functions satisfy Assumptions 2-3 with

Lf =





0 0

0 0



 , Lf =





1 0

0 1



 ; W1 =





0.2 −0.2

0.2 −0.2



 , W2 =





−0.1 0.1

0.1 −0.1



 .

According to Theorem 1, the array of coupled delayed complex networks (1) with stochastic disturbances

can achieve globally asymptotically synchronization in the mean square under the allowable maximum delay.
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By using the Matlab LMI Toolbox, LMIs (9)-(10) are feasible (the solutions are not given there for the purpose

of space saving). When we set r = 1, the time delay bound is 0.9475, and when we take r = 2, the allowable

maximum delay increases to 0.959. It can be seen that, the more the number of fractions, the less conservative

the criterion is.

By randomly choosing the initial states in [0, 1] × [0, 1] and under the case τ = 0.959, the synchronization

errors are plotted in Fig. 1 and Fig. 2, which confirm that the complex dynamical system (1) is globally

synchronized in the mean square.

V. Conclusions

In this paper, we have dealt with the analysis problem for network synchronization of a class of stochastic

delayed complex networks with N identical subsystems. By employing a ‘delay fractioning’ approach, we

have constructed a novel Lyapunov functional, and then we have used the properties of Kronecker product

and stochastic analysis theory to obtain the synchronization conditions. The criteria derived in this paper

are dependent on the allowable maximum delay, and it has been proved that the more the delay fractions

are, the less conservative the result will be. Moreover, the LMI-based criteria can be verified by the standard

numerical software. In the end of the paper, we have given an example to show the advantage and usefulness

of our results.

References

[1] C. Dangalchev, Physica A 338 (2004) 659.

[2] Z. Duan, G. Chen, L. Huang, Physics Letters A (in press, doi.org/10.1016/j.physleta.2008.02.056.)

[3] H. Gao, J. Lam, G. Chen, Physics Letters A 360 (2006) 263.

[4] Z. Li, G. Chen, IEEE Trans. Circuits Syst.-II 53 (2006) 28.

[5] W. Lu, T.Chen, Physica D 198 (2004) 148.

[6] S. Strogatz, Nature 410 (2001) 268.

[7] Z. Toroczkai, Los Alamos Science 29 (2005) 94.

[8] X. Wang, G. Chen, IEEE Circuits Syst. Mag. 3 (2003) 6.

[9] J. J. Yan, W. D Chang, M. L. Hung, Chaos, Solitons and Fractals 29 (2006) 506.

[10] W. Yu, J. Cao, J. Lu, SIAM J. Applied Dynamical Systems 7 (2008) 108.

[11] C. Hua, Q. Wang, X. Guan, Physics Letters A 368 (2007) 281.

[12] C.P. Li, W.G. Sun, J. Kurths, Physica A 361 (2006) 24.

[13] Z. Li, J. Lee, Physica A (in press, doi.10.1016/j.physa.2007.10.063.)

[14] X. Liu, T. Chen, Physica A 381 (2007) 82-92.

[15] Z. Wang, Y. Liu, M. Li, X. Liu, IEEE Trans. Neural Networks 17 (2006) 814.

[16] H. Gao, T. Chen, IEEE Trans. Auotmatic Control 53 (2008) 655.

[17] J. Liang, Z. Wang, X. Liu, Nonlinear Dynamics, 53 (2008) 153.

[18] J. Liang, Z. Wang, Y. Liu, X. Liu, IEEE Trans. Systems, Man, and Cybernetics - Part B (in press).

[19] Y. Sun, J. Cao, Z. Wang, Neurocomputing, 70 (2007) 2477.

[20] W. Wang, J. Cao, Physica A 366 (2006) 197.

[21] Z. Wang, H. Shu, J. Fang, X. Liu, Nonlinear Analysis: Real World Applications 7 (2006) 1119.

[22] S. Mou, H. Gao, W. Qiang, K. Chen, IEEE Trans. Systems, Man, and Cybernetics - Part B, 38 (2008) 571.



12

[23] S. Mou, Y. Zhao, H. Gao, W. Qiang, Int. J. Computer Math. (in press).

[24] A. N. Langville, W. J. Stewart, Journal of Computational and Applied Mathematics 167 (2004) 429.

[25] L. Arnold, Random Dynamical Systems. Springer-Verlag, Berlin, 1998.

[26] R.Z. Khasminskii, Stochastic Stability of Differential Equations. Alphen aan den Rijn, Sijthoffand Noor, Khasminskiidhoff,

1980.

[27] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia:

SIAM, 1994.

[28] Y. Liu, Z. Wang, X. Liu, Neural Networks 19 (2006) 667.

[29] K.Q. Gu, V.L. Kharitonov, J. Chen, Stability of time-delay systems. Boston: Birkhauser, 2003.



13

Captions:

Figure 1: Synchronization error of xi1(t) − x11 (i = 2, 3)

Figure 2: Synchronization error of xi2(t) − x12 (i = 2, 3)
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Fig. 1. Synchronization error of xi1(t) − x11 (i = 2, 3)
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Fig. 2. Synchronization error of xi2(t) − x12 (i = 2, 3)


