263 research outputs found

    Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study

    Full text link
    Small-angle correlations of pairs of protons emitted in central collisions of Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e. system-size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.

    Growth conditions, structure, and superconductivity of pure and metal-doped FeTe1-xSex single crystals

    Full text link
    Superconducting single crystals of pure FeTe1 xSex and FeTe0.65Se0.35 doped with Co, Ni, Cu, Mn, Zn, Mo, Cd, In, Pb, Hg, V, Ga, Mg, Al, Ti, Cr, Sr or Nd into Fe ions site have been grown applying Bridgman's method. It has been found that the sharpness of transition to the superconducting state in FeTe1 xSex is evidently inversely correlated with crystallographic quality of the crystals. Among all of the studied dopants only Co, Ni and Cu substitute Fe ions in FeTe0.65Se0.35 crystals. The remaining examined ions do not incorporate into the crystal structure. Nevertheless, they form inclusions together with selenium, tellurium and/or iron, what changes the chemical composition of host matrix and therefore influences Tc value. Small disorder introduced into magnetic sublattice, by partial replacement of Fe ions by slight amount of nonmagnetic ions of Cu (~ 1.5 at%) or by magnetic ions of Ni (~ 2 at%) and Co (~5 at%) with spin value different than that of Fe ion, completely suppresses superconductivity in FeTe1 xSex system. This indicates that even if superconductivity is observed in the system containing magnetic ions it can not survive when the disorder in magnetic ions sublattice is introduced, most likely because of magnetic scattering of Cooper pairs.Comment: 18 pages, 12 figures, 3 table

    Charged pion production in 4496^{96}_{44}Ru+4496^{96}_{44}Ru collisions at 400A and 1528A MeV

    Full text link
    We present transverse momentum and rapidity spectra of charged pions in central Ru + Ru collisions at 400AA and 1528AA MeV. The data exhibit enhanced production at low transverse momenta compared to the expectations from the thermal model that includes the decay of Δ(1232)\Delta(1232)-resonances and thermal pions. Modification of the Δ\Delta-spectral function and the Coulomb interaction are necessary to describe the detailed shape of the transverse momentum spectra. Within the framework of the thermal model, the freeze-out radii of pions are similar at both beam energies. The IQMD model reproduces the shapes of the transverse momentum and rapidity spectra of pions, but the predicted absolute yields are larger than in the measurements, especially at lower beam energy.Comment: 12 pages, 11 figure

    Sideward flow of K+ mesons in Ru+Ru and Ni+Ni reactions near threshold

    Full text link
    Experimental data on K+ meson and proton sideward flow measured with the FOPI detector at SIS/GSI in the reactions Ru+Ru at 1.69 AGeV and Ni+Ni at 1.93 AGeV are presented. The K+ sideward flow is found to be anti-correlated (correlated) with the one of protons at low (high) transverse momenta. When compared to the predictions of a transport model, the data favour the existence of an in-medium repulsive K+ nucleon potential.Comment: 16 pages Revtex, 3 ps-figures, submitted to Phys. Lett.

    Strange meson production in Al+Al collisions at 1.9A GeV

    Full text link
    The production of K+^+, K^- and φ\varphi(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K±^{\pm} mesons are obtained. A comparison of the ratio of kinetic energy distributions of K^- and K+^+ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of ϕ\phi mesons are deduced. The contribution to K^- production from ϕ\phi meson decays is found to be [17 ±\pm 3 (stat) 7+2^{+2}_{-7} (syst)] %. The results are in line with previous K±^{\pm} and ϕ\phi data obtained for different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure

    Measurement of K(892)0K^*(892)^0 and K0K^0 mesons in Al+Al collisions at 1.9AA GeV

    Full text link
    New measurement of sub-threshold K(892)0K^*(892)^0 and K0K^0 production is presented. The experimental data complete the measurement of strange particles produced in Al+Al collisions at 1.9AA GeV measured with the FOPI detector at SIS/GSI. The K(892)0K^*(892)^0 / K0K^0 yield ratio is found to be 0.0315±0.006(stat.)±0.012(syst.)0.0315\pm 0.006 (\mathrm{stat.})\pm 0.012 (\mathrm{syst.}) and is in good agreement with the UrQMD model prediction. These measurements provide information on in-medium cross section of K+K^+ - π\pi^- fusion which is the dominant process on sub-threshold K(892)0K^*(892)^0 production.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state

    Full text link
    We present measurements of the excitation function of elliptic flow at midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per nucleon. For the integral flow, we discuss the interplay between collective expansion and spectator shadowing for three centrality classes. A complete excitation function of transverse momentum dependence of elliptic flow is presented for the first time in this energy range, revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies. The equation of state of compressed nuclear matter is addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will be available at http://www.gsi.de/~fopiwww/pub

    Centrality dependence of subthreshold ϕ\phi meson production in Ni+Ni collisions at 1.9A GeV

    Full text link
    We analysed the ϕ\phi meson production in central Ni+Ni collisions at the beam kinetic energy of 1.93A GeV with the FOPI spectrometer and found the production probability per event of [8.6 ± 1.6 (stat)±1.5 (syst)]×104[8.6 ~\pm~ 1.6 ~(\text{stat}) \pm 1.5 ~(\text{syst})] \times 10^{-4}. This new data point allows for the first time to inspect the centrality dependence of the subthreshold ϕ\phi meson production in heavy-ion collisions. The rise of ϕ\phi meson multiplicity per event with mean number of participants can be parameterized by the power function with exponent α=1.8±0.6\alpha = 1.8 \pm 0.6. The ratio of ϕ\phi to K\text{K}^- production yields seems not to depend within the experimental uncertainties on the collision centrality, and the average of measured values was found to be 0.36±0.050.36 \pm 0.05.Comment: 9 pages, 5 figure

    EXCITED STATE ABSORPTION AND THERMOLUMINESCENCE IN Ce AND Mg DOPED YTTRIUM ALUMINUM GARNET*

    Get PDF
    In this paper we report preliminary results of optical studies on Y3 Al5012 (YAG) crystals codoped with Ce and Mg. By using measurements of luminescence, absorption, and luminescence excitation spectra we demonstrate that although the basic features introduced to the YAG host by the Ce-doping remain intact, the Mg-codoping imposes some significant changes on other properties of the material. These changes are potentially important for laser and/or scintillator applications of YAG:Ce and are due, most likely, to modifications of defect populations in the material. We characterize them by using the techniques of thermoluminescence and excited state absorption under excimer laser pumping. These techniques, interestingly, yield results that seem inconsistent. While the thermoluminescence signal of the Mg-doped sample is strongly reduced, suggesting that trap concentrations in the presence of Mg are suppressed, the excited state absorption signal, which we also relate to the traps, is higher. We offer a tentative explanation of this contradiction between the two experiments that involves a massive transfer of electrons from the Mg-related defects to the excited state absorption centers caused by the excimer pump itself
    corecore