382 research outputs found

    Extraction and preliminary characterization of microsomal (Mg2+ + K+)-ATPase activity of grapevine roots

    Get PDF
    The microsomal fraction extracted from grapevine roots obtained from woody cuttings possesses Mg2+-dependent, monovalent cation-stimulated ATPase activity. Addition of BSA, PVPP, choline-CI, ethanolamine, glycerol-1-P besides EDTA and DTT to the homogenizing medium as preservative compounds was required in order to achieve a successful isolation.When microsomes were extracted according to HODGES and LEONARD (1974) by homogenizing root tissue in the presence of EDTA and DTT, the enzyme activity exhibited inhibition by Mg2+ only partially relieved by K+, and properties of acid phosphatase rather than ATPase.Cation-stimulated ATPase of microsomes protected during homogenization was further characterized and it showed optimum activity at pH 7.0 in the presence of Mg2+ plus K+ . It was specific as a triphosphatase and Mg2+, rather than other divalent cations, was preferred as a cofactor. As monovalent stimulating cation, only NH4+ could substitute for K+ with equivalent efficiency. The kinetics of K+ stimulation showed a biphasic pattern.Biochemical bases of ion uptake by grapevine seem to be similar to those clarified for annual plants

    FePO(4)NPs Are an Efficient Nutritional Source for Plants: Combination of Nano-Material Properties and Metabolic Responses to Nutritional Deficiencies

    Get PDF
    Phosphorous and iron are a macro- and micronutrient, respectively, whose low bioavailability can negatively affect crop productivity. There is ample evidence that the use of conventional P and Fe fertilizers has several environmental and economical disadvantages, but even though great expectations surround nanotechnology and its applications in the field of plant nutrition, little is known about the mechanisms underlying the uptake and use of these sub-micron particles (nanoparticles, NPs) by crop species. This work shows that cucumber and maize plants both use the nutrients borne by FePO(4)NPs more efficiently than those supplied as bulk. However, morpho-physiological parameters and nutrient content analyses reveal that while cucumber plants (aStrategy Ispecies with regard to Fe acquisition) mainly use these NPs as a source of P, maize (aStrategy IIspecies) uses them preferentially for Fe. TEM analyses of cucumber root specimens revealed no cell internalization of the NPs. On the other hand, electron-dense nanometric structures were evident in proximity of the root epidermal cell walls of the NP-treated plants, which after ESEM/EDAX analyses can be reasonably identified as iron-oxyhydroxide. It appears that the nutritional interaction between roots and NPs is strongly influenced by species-specific metabolic responses

    Characterization of a potassium-stimulated ATPase in membrane fraction isolated from roots of grapevine seedlings

    Get PDF
    A microsomal fraction possessing Mg2+-dependent and K+-stimulated ATPase activity was extracted by differential centrifugation from roots of grape seedlings (Vitis vinifera L. cv. Verduzzo).Roots yield from grape seeds was stimulated by means of GA3 and further improved by treatments able to control microbial contamination.The biochemical characteristics of ATPase activity were studied and compared with those previously reported for roots produced by grape woody cuttings.The presence of choline-Cl, ethanolamine and glycerol-1-P in addition to BSA, EDTA, PVPP and DTT in the homogenizing medium was obligatory in order to record the K+-stimulated component of activity.The enzyme was activated by Mg2+, further stimulated by monovalent ions and showed strong preference for ATP as the substrate and optimum pH at 6.5 in the presence of both Mg2+ and K+. The effect of different monovalent ions followed a sequence similar to that found in cereal roots preparations, but very different with respect to that recorded for preparations from roots of grape woody cuttings.K+-ATPase activity was inhibited by vanadate and DES whereas molybdate and azide had no or scarce effect . ATPase activity showed a simple Michaelis-Menten saturation with increasing ATP: Mg concentration, and a complex pattern of possible negative cooperativity for K+ stimulation.Microsomes fractionated using sucrose density gradient showed enrichment in plasmalemma vesicles at 1.10-1,15 g ml-1 density.This parameter differentiates this fraction from similar preparations containing plasmalemma ATPase obtained from roots of various annual plants

    Humic substances contribute to plant iron nutrition acting as chelators and biostimulants

    Get PDF
    Improvement of plant iron nutrition as a consequence of metal complexation by humic substances (HS) extracted from different sources has been widely reported. The presence of humified fractions of the organic matter in soil sediments and solutions would contribute, depending on the solubility and the molecular size of HS, to build up a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS complexes directly usable by plant Fe uptake mechanisms. It has also been shown that HS can promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and post-transcriptional level. Furthermore, the distribution and allocation of Fe within the plant could be modified when plants were supplied with water soluble Fe-HS complexes as compared with other natural or synthetic chelates. These effects are in line with previous observations showing that treatments with HS were able to induce changes in root morphology and modulate plant membrane activities related to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS complexes, either naturally present in the soil or exogenously supplied to the plants, can promote Fe acquisition in a complex way by providing a readily available iron form in the rhizosphere and by directly affecting plant physiology. Furthermore, the possibility to use Fe-HS of different sources, size and solubility may be considered as an environmental-friendly tool for Fe fertilization of crops

    Plasma Membrane H+-ATPase in Maize Roots Induced for NO3- Uptake

    Full text link

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: i - efeito da concentração.

    Get PDF
    O vermicomposto contém uma concentração elevada de substâncias húmicas e já é bem conhecido o efeito do seu uso sobre as propriedades do solo. No entanto,a ação direta das substâncias húmicas sobre o metabolismo das plantas é menos conhecida. O objetivo deste trabalho foi avaliar o uso de humatos extraídos de vermicomposto de esterco de curral com KOH 0,1 mol L-1 sobre o desenvolvimento e metabolismo de ATP em plântulas de alface. Após a germinação, plântulas de alface foram tratadas com os humatos em concentrações que variaram de 0 a 100 mg L-1 de C, durante quinze dias. Foram avaliados o crescimento da raiz e a atividade das bombas de H+ isoladas da fração microssomal do sistema radicular. Foi observado aumento na matéria fresca e seca do sistema radicular, bem como no número de sítios de mitose, raízes emergidas do eixo principal, na área e no comprimento radiculares, com o uso do humato na concentração de 25 mg L-1 de C. Também foi observado, nessa concentração, aumento significativo na hidrólise de ATP pelas bombas de H+, responsáveis pela geração de energia necessária à absorção de íons e pelo crescimento celular
    corecore