678 research outputs found
Solid state radiographic image amplifiers, part B Final report, 1 Jun. 1968 - 30 Nov. 1969
Solid state image amplifiers for fluoroscopic screens and X ray film used in radiographic analysi
Fabrication and characteristics of experimental radiographic amplifier screens
The fabrication process and transfer characteristics for solid state radiographic image transducers (radiographic amplifier screens) are described. These screens are for use in realtime nondestructive evaluation procedures that require large format radiographic images with contrast and resolution capabilities unavailable with conventional fluoroscopic screens. The screens are suitable for in-motion, on-line radiographic inspection by means of closed circuit television. Experimental effort was made to improve image quality and response to low energy (5 kV and up) X-rays
Solid state radiographic image amplifiers Final report, 1 Jul. 1967 - 30 Apr. 1968
Solid state radiographic image amplifier for direct viewing of image
Solid state radiographic image amplifiers, part C
The contrast sensitivity of the radiographic amplifiers, both the storage type and nonstorage type, their absolute sensitivity, and the reproducibility of fabrication were investigated. The required 2-2T quality level was reached with the radiographic storage screen. The sensitivity threshold was 100 to 200 mR with 45 to 100 kV filtered X-rays. The quality level of the radiographic amplifier screen (without storage) was 4-4T; for a 6 mm (0.25 in.) thick aluminum specimen, a 1 mm (0.040 in.) diameter hole in a 0.25 mm (0.010 in.) thick penetrameter was detected. Its sensitivity threshold was 2 to 6 mR/min. The developed radiographic screens are applicable for uses in nondestructive testing
Comparison of the efficiency of Na+/Ca2+ exchanger or Na+/H+ exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias
During ischaemia/reperfusion, the rise in [Na+]i, induced by simultaneous depression of the Na+/K+-ATPase and activation of the Na+/H+ exchanger (NHE), shifts the Na+/Ca2+ exchanger (NCX) into reverse transport mode, resulting in Ca2+ i overload, which is a critical factor in enhancing the liability to cardiac arrhythmias. The inhibition of NHE, and recently NCX has been suggested to effectively protect the heart from reperfusion-induced arrhythmias. In this study, we investigated and compared the efficacy of individual or the simultaneous inhibition of the NHE and NCX against reperfusion-induced arrhythmias in Langendorff-perfused rat hearts by applying a commonly used regional ischaemiareperfusion protocol. The NHE and NCX were inhibited by cariporide and SEA0400 or the novel, more selective ORM10103, respectively. Arrhythmia diagrams calculated for the reperfusion period were analysed for the incidence and duration of extrasystoles (ESs), ventricular tachycardia (VT) and ventricular fibrillation (VF). NHE inhibition by cariporide was highly efficient in reducing the recorded reperfusion-induced arrhythmias. Following the application of SEA0400 or ORM-10103, the number and duration of arrhythmic periods were efficiently or moderately decreased. While both NCX inhibitors effectively reduced ESs, the most frequently triggered arrhythmias, they exerted limited or no effect on VTs and VFs. Of the NCX inhibitors, ORM-10103 was more effective. Surprisingly, the simultaneous inhibition of the NCX and NHE failed to significantly improve the antiarrhythmic efficacy reached by NCX blockade alone. In conclusion, although principal simultaneous NHE+NCX inhibition should be highly effective against all types of the recorded reperfusion-induced arrhythmias, NCX inhibitors, alone or in combination with cariporide, seem to be moderately suitable to provide satisfactory cardioprotection - at least in the present arrhythmia model. Since ORM10103 and SEA0400 are known to effectively inhibit after-depolarisations, it is suggested that their efficacy and that of other NCX inhibitors may be higher and more pronounced in the predominantly Ca2+ i-dependent triggered arrhythmias. © 2015, Polish Physiological Society. All rights reserved
A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability
Relativistic electron (RE) beams at high current density (low safety factor, q ( a )) yet very low free-electron density accessed with D-2 secondary injection in the DIII-D and JET tokamak are found to exhibit large-scale MHD instabilities that benignly terminate the RE beam. In JET, this technique has enabled termination of MA-level RE currents without measurable first-wall heating. This scenario thus offers an unexpected alternate pathway to achieve RE mitigation without collisional dissipation. Benign termination is explained by two synergistic effects. First, during the MHD-driven RE loss events both experiment and MHD orbit-loss modeling supports a significant increase in the wetted area of the RE loss. Second, as previously identified at JET and DIII-D, the fast kink loss timescale precludes RE beam regeneration and the resulting dangerous conversion of magnetic to RE kinetic energy. During the termination, the RE kinetic energy is lost to the wall, but the current fully transfers to the cold bulk thus enabling benign Ohmic dissipation of the magnetic energy on longer timescales via a conventional current quench. Hydrogenic (D-2) secondary injection is found to be the only injected species that enables access to the benign termination. D-2 injection: (1) facilitates access to low q ( a ) in existing devices (via reduced collisionality & resistivity), (2) minimizes the RE avalanche by 'purging' the high-Z atoms from the RE beam, (3) drives recombination of the background plasma, reducing the density and Alfven time, thus accelerating the MHD growth. This phenomenon is found to be accessible when crossing the low q ( a ) stability boundary with rising current, falling toroidal field, or contracting minor radius-the latter being the expected scenario for vertically unstable RE beams in ITER. While unexpected, this path scales favorably to fusion-grade tokamaks and offers a novel RE mitigation scenario in principle accessible with the day-one disruption mitigation system of ITER
- …