137 research outputs found

    Higher-Order Effects in Biaxial Flexure of GFRP I-Section Beams

    Get PDF
    A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress is found to be about two to three times larger than that determined using the first-order theory

    Passive damping concepts for slender columns in space structures

    Get PDF
    An experimental and theoretical study of three different passive damping concepts is conducted for a slender member with partial rotational end restraints. Over a hundred full-scale natural vibration experiments were conducted to evaluate the effectiveness of mass-string, polyethylene tubing, and chain damping concepts. The damping properties obtained from the experiments were used in the approximate analyses based on the partial differential equation of motion for the problem. The comparison of the experimental and the theoretical deflection-time relations shows that the velocity-dependent damping model used in the theory is adequate. From the experimental results, the effect of end connection friction and induced axial forces on damping is identified. The definition of an efficiency index is proposed based on the damping ratio and the mass of a given passive damping device. Using this definition, the efficiencies of the three damping devices are compared. The polyethylene tubing concept resulted into a low damping efficiency

    Stability, vibration and passive damping of partially restrained imperfect columns

    Get PDF
    A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot

    Exposure to NO2 in occupational built environments in urban centre in Lahore

    Get PDF
    Increased economic growth, urbanisation and substantial rise in automobile vehicles has contributed towards the elevated levels of air pollution in major cities in Pakistan. Aone week study was conducted by using passive samplers to assess NO2 concentration in occupational built environments at two most congested and populated sites of Lahore. Both sites were locatedon the busy roads of Lahore. At Site-I the highest concentration was in outdoors followed by corridor and indoor. While at Site II all the sampling location wereindoors and level were comparable to that of outdoor levelsat Site I. The results suggest the likely contribution of ambient sources in exposure to indoor NO2 in educational and other occupational built environments in urban centres

    Exposure to NO<inf>2</inf> in occupationalbuilt environmnets in urban centre in Lahore

    Get PDF
    Increased economic growth, urbanisation and substantial rise in automobile vehicles has contributed towards the elevated levels of air pollution in major cities in Pakistan. Aone week study was conducted by using passive samplers to assess NO2 concentration in occupational built environments at two most congested and populated sites of Lahore. Both sites were locatedon the busy roads of Lahore. At Site-I the highest concentration was in outdoors followed by corridor and indoor. While at Site II all the sampling location wereindoors and level were comparable to that of outdoor levelsat Site I. The results suggest the likely contribution of ambient sources in exposure to indoor NO2 in educational and other occupational built environments in urban centres

    Time varying interdependency between COVID-19, tourism market, oil prices, and sustainable climate in United States: evidence from advance wavelet coherence approach

    Get PDF
    This study attempts to empirically estimate the interdependence between COVID-19, tourism market, oil prices, and sustainable climate in United States. In doing so, we employ an advanced Morlet’s wavelet approach, namely, Wavelet coherence transform (WCT), Partial and Multiple Wavelet Coherence and found a strong co-movement between variables, which is varied across the time scales, indicating the initial, peak, and after peak effect of COVID-19 on tourism market, oil prices, and carbon emissions using daily data from 6 March 2020 to 6 August 2020. The visuals of WCT exhibit a cyclic (anti-cyclic) relationship between tourism and oil prices, suggesting a strong positive (negative) co-movement in the shorter and longer (medium) period. Tourism and carbon emissions possess a strong positive co-movement across all periods except in the medium run; however, the intensity of this movement is higher in the very short-run compared to medium and longer-run. The results reveal an anti-cyclic association between COVID-19 and tourism, and COVID-19 is leading tourism with strong negative co-movements. Finally, the results describe that carbon emissions and COVID-19 are anti-cyclical and display a positive causality in the shorter run. These results offer valuable guidelines for all stakeholders. © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    Nanoporous alumina membranes for sugar industry: An investigation of sintering parameters influence on ultrafiltration performance

    Get PDF
    Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids
    corecore