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STABILITY, VIBRATION, AND PASSIVE DAMPING OF
PARTIALLY RESTRAINED IMPERFECT COLUMNS

1. Razzaq
Department of Civil Engineering
01d Dominfon University
Norfolk, Yirginia
R. T. Voland, H. G. Bush, and M. M, Mikulas, Jr.
Langley Research Center
SUMMARY
A theoretical and experimental study of slender tubular columns for
possible use in space structures is conducted in the presence of partial rota-
tional end restraints. New explicit formulas are derived for computing the
buckling load and the lowest natural frequency of perfectly straight uniform
elastic members with rotational end restraints possessing linear moment-
rotation characteristics. An exact solution in the form of a transcendental
equation, and a numerical solution using second-order finite-differences are
also presented. The presence of an initial imperfection is also incorporated
into the numerical procedure. Each of the solutfons presented originates from
the partial differential equation and the associated boundary conditions for
the problem. It is shown that the buckling load and the natural frequency
formulas developed are highly accurate. Vibration tests are conducted on an
imperfect tubular steel member in the absence of an axial load. A damping
concept consisting of a string-mass assembly is explored in a few of the tests,
in addition to the structural damping present in the system. Three passive
damping configurations were investigated; one with three small equidistant lead
shots attached to a string inside the tubular member, one with the three lead
shots attached at the center of the tube, and the other with one lead shot at
the center of the tube. The three lead shot configurations both provided con-
siderably greater damping than the single lead shot damper.
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SYMBOLS
damping coefficient
outer diameter of the tubular member
Young's modulus
lowest natural frequency of the column
experimental natural frequency
dimensionless natural fregquency
panel length
moment of inertia
end rotational stiffness
dimensionless end rotational stiffness
member length
axial load
buckling load of the column
dimensionless buckling load of the column
time
wall thickness of the tubular member
net lateral displacemen*
initial out-of-straightness
member longitudinal ordinate
axis parallel to the face of the proximity probe
axis perpendicular to the face of the proximity probe
envelope of the midspan maximum dynamic deflection
time interval
damping ratio

mass per unit length of the column
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INTRODUCTION
The analysis for buckling and natural vibration of elastic columns with
pinned or fixed end conditions is well-known (see refs. 1 and 2). The prac-
tical columns in real space structures, however, seldom possess such ideal
boundary conditions. The connections and the adjoining members which frame in
at the ends of a typical column in a space structure provide rotational

restraints which affect the behavior of the column itself. The buckling load

of a partially restrained column may be obtained by using the classical eigen-
value approach leading to a transcendental equation (see for example, ref. 3)
which must be solved 1teratively. Also, it is possible to formulate an exact
solution for determining the natural frequency of such a member in the form of
a complicated transcendental equation which must also be solved iteratively.

This paper presents an cutcome of a theoretical and experimental investigation

1 RS, - ot e~

of tubular members restrained partially. New explicit formulas are derived for

computing the buckling 1cad and the natural frequency of perfectly straight

W?q

i

uniform elastic members having partial rotational end restraints possessing
1inear moment-rotation characteristics. An exact solution in the form of a
transcendental equation, and a numerical solution using second-order finite-

differences are also presented. The presence of initial imperfection is also

|
|
|

incorporated into the numerical procedure. Each of the solutions presented
originates from the partial differential equation of motion governing the
dynamic response of the column in the presence of a constant axial load and
the boundary conditions representing the rotational springs. The vibration
tests are conducted on an imperfect tubular steel member with rotational
elastic end restraints and in the absence of an axial load. The use of a
damping concept is explored in a few of the tests, in addition to the
structural damping already present in the system.
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PROBLEM STATEMENT AND GOVERNING EQUATIONS

Figure 1| shows schematically a slender column of length L with a hollow
circular cross section. The outer diameter of the section is D, and the wall
thickness is t,. The column has an initial out-of-straightness given by w.
A static axfal load P 1is applied to the column. Also, the ends of the coluan
are not allowed to translate laterally, and possess partial rotational
restraints each having a rotational spring stiffness of K in-1b/radian. The
material of the column is elastic. The governing differential equation of

equilibriun for the member shown in figure 1 may be written as:

2w alw oW 2w aw
EI—-T»P( 5 2)"") 2+C35=° (1)
X X ax ! at
in which
wiw,t) = Tlateral displacement

w(x) = 1initfal out-of-straightness, or imperfection

El = flexural rigidity of the column

P = axial load

o = mass per unit length of the column
c = damping coefficient

Equation (1) without the term involving w can be found in the standard
texts on structural dynamics (see, for example, ref. 2). As evident from the

last term in equation (1), the system damping is assumed to be proportional to
the velocity at any given time,

BOUNDARY AND INITIAL CONDITIONS

The boundary conditions for the problem shown in figure 1 are as follows:

w(d,t) = 0 (2)
wil,t) = 0 (3)

s’,:j'jt‘ ;
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32' aw
EL S5 (0,8) = K = (0,¢) (8)
ax
ax
)2 aw
E1 3 L,e) = x 2 (1, (5)
ax2 ax

Equations (2) and (3) represent zero lateral translation of the member ends.
Equations (4) and (5) are the natural boundary conditions dependent upon the
flexural stiffness of the column ends and the restraint moments developed by
the rotational springs.

The initial conditions for obtaining the natural frequency of the column

are taken as follows:
w(x,0) = ¢(x; P, K, EI, L) (6)
aw -
5t (x,0) = 0 (7)

in which & 1s a function of x and the terms P, K, EI, and L. The
initial condition given by equation (6) states that at time t equal to zero,
the column has been displaced ("plucked”) resulting in a shape given by a func-
tion of x, the applied axial load P, the spring constant K, the flexural
rigidity EI, and the length L. Eauation (7) imposes a zero inftfal velocity

condition.

EXACT SOLUTION
For the case of no inftial imperfection, that is, w = 0, equation (1) can

be solved by the separation of variables technigue by letting:
wix,t) = Wix) T(t) (8)

Substituting equation (8) into (1) leads to the following pair of ordinary

differential equations (see ref. 4):
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%4» sz;-m-o (9)
dx dx
froca, 2 o)
dtz p dt

fn which A 1s a parameter to be determined, « 1s the undamped circular

frequency given by:

0 = Fzgk: (11)

and k {s given by:

k ={§§;- (12)

v

The exact solution to equation (9) is given by (ref. 4):

W(w) = B, cos g;x + B, sin g;x + By cosh ,x + B, sinh p,x (13)
in which
2 / 4
2 k- tyk + 4\
31.2 t 5 (14)

and By through B4 are constants of integration. The solutions to equa-
tion (10) are all of the form (ref. 6):

T = F(t) (15)

in which F(t) depends upon the problem input parameters, w, and the inft{al
conditions (6) and (7) invoked via equation (8). The damped circular frequency,
Wy» is given by (ref. 6):

vy @ Wl - 2 (16)

in which ¢ 1{s the damping ratio.

2,
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The solutfons based on equation {13) for {dealized pinned or fixed end

' conditions are given in the Titerature (see ref. 4). Here, an exact solution

Cot tions reduce to the following ones:

W(0) =

W(L) =

i
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suybstitution of this

0

0

d
(0) = K-a-x- (O)

oo
(L= H

egiation of the type:

312
422
432
42

413
423
433
3

a4
94
a34

4
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by equations (2) through (5) 1s presented.

Bl [ 0
82 . z 0
B { 0
34' \ 0

for a column with partial restraints and having the boundary conditions given

Using equation (8), these condi-

(1

(18)

(19)

(20)

Substituting equation (13) into equations (17) through (20) results in a matrix

(21)

in which the a4 terms are given in appendix A. Setting the determinant of

the matrix in equation (21) equal to zero leads to a complicated transcendental
. equation. For a given value of the axial load P, the column dimensions and
material properties, and the spring constant K, the resulting transcendental

equation may be solved iteratively for the lowest nontrivial value of . A

value into equation (11) gives the circular frequency

of the partially restrained column.

To find the column static buckling load,

®
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however, the smallest nontrivial value of P nust be sought with A = 0, since
the frequency of a column becomes zero when the axial static load equals the
buckling 1oad.

When the axial load P 1s less than the buckling load, the deflection
versus time relationship may be found by substituting the w value, ascer-
tained by the iterative procedure, into equatfons (13) and (15) which, in turn,
must be substituted into equation (8).

The disadvantage of the exact solution {s that it can be obtained only
through trial and error. In the following section, explicit formulas for
computing the buckling load and the natural frequency of the partially

restrained column are derived.

BUCKLING LOAD AND NATURAL FREQUENCY FORMULAS
In this section, new explicit formulas for calculating the buckling load
and the natural frequency of the partially restrained column shown in figure 1,
in the absence of initial imperfections, are derived and are based on a highly
accurate assuned mode shape of the column. The procedure involves selecting a
trigonometric expression which satisfies the boundary conditions a priori, and
then using Galerkins' orthogonality criterion.

Let the solution to equation (9) be taken in the following form:

W= A sin ff-+ Az(l - cos ZEE-) (22)
in which A; and A, are constants. This expression satisfies the boundary
conditions (17) and (18). The sine term alone would represent a pinned member
while the term in the parentheses approximates a completely fixed end member.
A combination of the two functions has not been explored by any previous inves-
tigator for simul=ting the deflected shape of the member with end conditfons

YLD
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somewhere between pinned and fixed cases, that is, for the partially restrained
end conditions. Equation (22) represents the approximate fundamental mode of
the member, thus the buckling load and the natural frequency expressions are
associated with this mode. Furthermore, due to the symmetry of the W
expression about the member midspan, 1t {s sufficient to enforce only one of
the conditfons given by equations (19) and (20). Substituting W from
equation (22) into equation (19) results in the following relationship

between A; and Ay:

KL (23)

A &HEl M

Substituting equation (23) into (22) gives:

X KL 2ux
H=A1[51HL_-+4_::-E—I(1-CST)] (24)

If equation (24) were exact solution, it would satisfy equation (9) exactly.

3

Since it is an approximate solution, its substitution into equation (9) results

= '..? SRR LRI T s s e

in an error expression given by ¢ as follows:

4 X 2nX k X 2% X
€= A 1-(1n1—-16ncos--ﬂ—>+17 (-sinf—+4ncos—!—)
1 L4 L L L L L

- A[sin E—x + n(l - coS Z%X)D (25)

in which:
KL
" %El (26)
Invoking use of Galerkin's orthogonality criterion gives the following
equation:
L
e[sinl’i+ n(t - cos Eﬂ)] dx = 0 (27)
b L L

m"@—r
\
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Upon performing the integration, rearranging, and noting that A; ¥ O for the
nontrivial solution, an explicit expression for A 1s obtained from equa-
tion (27). Using this A expression, and noting that w = 2«f, where f s
the undamped natural frequency in Hertz, the following formula is obtained:

2 2 2
12(:51)2(’-2- - ‘E‘T)* 32 EXKL(; - %)4» :a(m)z(i’i2~ ) %.)
1 |E L L L

= |- (28)
L\J P 12(xE1)% + 32 EIKL +% (kL)

Of course, the damped frequency can be obtained by using equation (16).

A buckling load formula for the column shown in figure 1 can be obtafned
by setting f from equation (28) equal to zero, since the frequency of the
column approaches zero as the axial Toad ap, -oaches the buckling load. Thus,
setting the right side of equation (28) to zero, simplifying, and solving for
the critical P value leads to:

- quI[.IZ(nEI)Z + 80 EIKL ¢+ 12(KL)2

cr ? 2 2 (29)
L 12{=El) + 32 EIKL + 3(KL)

Formulas (28) and (29) can be used to predict the natural frequency, and the
elastic buckling load of a perfect column with equal partial end restraints.
The formulas derived above are directly applicable in the absence of an
initial imperfection. It is well-known (ref. 3) that the maximum load which an
imperfect elastic column may carry, in the presence of pinned or fixed end
conditions, asymptotically approaches the Euler buckling load of the corre-
sponding perfect member. Although the detafls are not given here, it can be
shown that the same conclusion is applicable to the partially restrained column
considered herein., Furthermore, similar reasoning is applicable to the evalua-

tion of the Towest natural frequency of both perfect and imperfect members.
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COMPARISON FOR LIMITING BOUNDARY CONDITIONS

If the end spring stiffness K 1s taken as zero, the 1imiting case of a
column with pinned ends {s obtained. It can be verified that 1f K {s set
equal to zero in equations (28) and (29), the resulting f and P.. values
are the exact solution for pinned ends (see refs. 1, 2, and 5). For a fixed
end column, the value of K equals infinity. To evaluate f for this 1imiting
case, the numerator and the denominator terms under the radica! sign should
first be divided by K2 and the resulting expression evaluated as K
approaches infinity. Using the expression for f thus obtained, the circular

frequency o for a member with zero axfal load is found to be as follows:

w = 22.79‘-21— (30)
4
pl

which i1s only slightly different from the exact w expression given in
reference 5 with a coefficient of 22.40 outside of the radical tew. To
evaluate P.. with an infinite value for K, the numerator and the denominator
terms on the right side of equation (29) should first be divided by Kz and
the resulting expression evaluated as K approaches infinity. This process

Teads to the exact buckling load of a fixed end column given in reference 1.

INTERACTION RELATIONS
Figure 2 presents nondimensional interaction curves relating the nondimen-
sional frequency f and its square (?)2 with no axial load (P = 0 f{n
fig. 1), and the buckling load P , to the nondimensional spring constant K ,

defined as follows:

- f

f ?: (31)
- pcr

P s (32,

o

r

R R T
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in which f 1s given by equation (28) with P = 0; f_, {1s the value of f
with K = =; P.. {s given by equation (29); and P_ 1s the value of P..
with K = =, As seen from this figure, f {ncreases from about 0.433 tc 1.0
as K {s varied between zero and infinity. The variation of (?)2 with K

{s also showa. Similarly, P 1ncreases from 0.25 *0 1.0 as K {s varfed
between zero and infinity, viz., from the pinned to the completely fixed end
condition. Substantial increases in f, (?)2. and P occur as K fis
increased from zero to about 20, beyond which only small {ncreases are observed
even for very significant increments in K . This shows that what may appear
to be a nominal end restraint may actually provide a considerable degree of end
fixity rather than a nearly pinned condition. In fact, a 'moderate’ amount of
end restraint may provide near-complete end fixity.

As may be seen from equation (28), the presence of an axfal load P 1in
the presence of partial end restraints would reduce the natural frequency ¢.
Thus, the f, and (?)2 versus K relations with P > 0 would fall below
those shown in figure 2.

A comparison of the P versus K relation shown in figure 2 was made
with a finite element solution of the problem where the column was divided into
a total of ten segments. The results were found to be almost 1dentical. The
validity of the formula (29) was also verified by computing a few of the points

on the P versus K relation in figurc 2 using an exact efgenvalue solution

discussed earlier in this paper, Again, the results were almost identical.

FINITE-DIFFERENCE SOLUTION
Using second-order central finite-difference expressions (see ref. 7), the

partial differential equation (1) may be written as follows:
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x R R I R R IR TR A e
+-P—(u -2, .t W ) + Pylx,)
hZ i-1,] 1,3 i+1,3 i
P (w2 tu )b (ew,  tw, o) =0 (34) |
(At)z 1,3-1 i.J i, 5+l (At)z 1.3 1,53+1 |
in which:
h = panel length along the x-axis of the column (fig. 1)
at = time interval
¢(xj) = second derivative relative to x of the imperfection |

function w
x; = th, for each 1 =1, 2, 3, ...
The subscript 1 refers to the ith panel point over the domain 0 < x < L, and

S AT

the subscript j refers to the number of time increments such that the time

crpee— -

at J 1is given by the following equation:
ty = j(at), foreach j =0, 1, 2, 3, ...

. Similarly, the boundary conditions (2) through (5) can be expressed in the |

finite-difference form as follows:

U (35)

i; "y =0 (36)

.:;[ . .

‘%’ (Fr ) (-2)my = 37) i

- (:—I";)"n-u +('ETI'+%)'N01.J°° (38) 5
|

rooe .
RN X

Applying equation (34) at 1 =1, 2, 3, ..., (M-1) and invoking the condi-
tions (35) through (38) leads to the following matrix equation:

[ O I Y
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= cl[r](w1 } + cz{ui,J-l} + (pi)

RIRISY 3

in which:

4 at

Py ° Pc1¢(x1)

and [r] 1is a symmetric coefficient matrix of the order (M-1) by (M-1).
Appendix B defines the terms of this matrix for M = 6 as an example.

14

(39)

(40)

(41)

(42)

(43)

(44)

Equation (39) may be used to predict the lateral deflections Wi 41 If

w3 and Wi j.1 are known. To avoid having a negative time interval due to

the use of the central finite-difference scheme when starting the recursion

indicated in this equation, the following special forward start-up difference

equation for w1 is derived in appendix C:
i1 7 D%ep t (<8 By dey ¥ (BB - b, + 1],

+ (-4b_+ Db

6 ¥ D)oyt D

6%+2 ¥ PgPYy
in which:

.. (At)2 EI

6 2h4 p

b

Cawle

(45)

(46)

(47)

(48)
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In using the recursive equation (39), the panel length h and the time incre-
ment At should be kept small to avoid numerical instability of the solution.
For the member tested in the laboratory described later in this paper, it was
found sufficient to use h = L/6, and at = 0.001 sec to ensure both con-

vergence and numerical stability.

EXPERIMENTAL INVESTIGATION

The experimental portion of the investigation consisted of conducting
several natural vibration tests on a tubular steel member of about 12 ft
length, and outer and inner diameters of 0.50 and 0.37 in., respectively. The
ends were partially restrained by specially designed connections, and no axial
load was applied. The steel member was used since very slender graphite com-
posite tubes are not yet available, and the procedures used in this investiga-
tion are good for both materials. The mwember had some initial imperfection due
to manufacturing and handling processes.

Figure 3 shows sketches of the member tested, and the details of the end
connections. Each end connection was a two-piece assembly. One piece was a
steel blade 1-1/2 in, long with a 3/16 in. x 1/2 in cross section welded to a
steel base plate. The other piece was a steel clevis designed to fit snugly
over all but 1/4 in. of the blade and fastened to 1t by screws fitted through

two drilled holes. The exposed 1/4 in. of the blade, thin in one direction
(3/16 in.) but thick in the other (1/2 in.) provided partial rotational
restraint in one plane of vibration and almost total rotational restraint in
the orthogonal plane. This design provided the member a preferred direction of
vibration, namely, about the weaker axis of the blade. The top end of the
clevis was a 1-in. threaded rod which screwed into the steel member. The
member and the end fixtures were threaded so that one end had right-hand
threads and the other had left-hand threads. These opposite thread directions
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allowed the system to act 1ike a turnbuckle so that the top and the bottom end
fixtures could be easily aligned during assembly. The upper base plate was
bolted to a heavy bracket which in turn was bolted to a backstop, and the lower
base plate was bolted to the floor directly beneath the upper one. The clevis
portions of both end fixtures were screwed into the appropriate ends of the
member. The upper end of the member was then attached by the clevis-blade
Joint to the base plate. The turnbuck.e feature of the system was then used to
align the attachment holes on the lower end clevis-blade joint so that no axial
tension or compression was induced in the system.

The instrumentation used in the tests consisted of a proximity prodbe,
proximity probe target, and a strip chart. The proximity probe was mounted on
a bracket at midspan of the tube and in 1ine with the preferred axis of vibra-
tion. A flat circular piece of aluminun was bonded to the member at midspan
for use as a target for the proximity probe. A photo linagraph strip chart
plotted the relative deflection versus time using deflection data from the

proximity probe.

Evaluation of End Restraint Stiffness

To evaluate the end restraint rotational stiffness K experimentally, the
setup shown schematically in figure 4 was used. The base plate with the clevis-
blade joint (a) described earlier is bolted to the test bed. A rigid round
steel bar (b) is screwed into the top of the clevis. A cable (c) is attached
to the steel bar near its top end and looped around the pulleys d, e, f, g, and
connected to the connection blade close to the bottom, as shown in the figure.
When a load W {s suspended through the pulley f, it introduces equal and
opposite forces in the horizontal portions (c and h) of the cable, thus
cancelling the shear 1n the connection and the steel bar between the points of
cable attachment while applying a pure bending moment to the clevis-blade

B e
llﬂo‘f
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connection. The elimination of the force is necessary since the connection
rotational spring stiffness K 1s the slope of only the pure moment versus the
rotation relationship. A dial gage was mounted at 12 in. from the base plate
to measure the horizontal deflections of the steel bar b for successive incre-
ments ‘n ti*: applied load W. The deflections thus measured were used for
computing the connection rotations. The maximum value of W applied was

2.6 1b. Five tests were conducted by attaching the shear-cancelling cable to
the Yower clavis-blade attachment screw, and another five were conducted by a
simflar attuchment to the upper screw. The same number of tests were also
conducted on each of the top and the bottom end fixtures. The average of these
20 tests resulted in a 1inear moment-rotation relationship from which the
following value of K was obtained:

K = 1,974.3 in-1b/radian (49)

and was found to be similar to that obtained from approximate theoretical

stiffness calculations using simple bending theory.

Natural Vibration Tests

A number of natural vibration tests were conducted on the partially
restrained tubular member shown in figure 3 both with and without internal
passive damping devices. Figure 5 shows schematically the tubular member with
(a) no fnternal pass‘ve damping device; (b) with an internal passive damper in
the form of a single lead shot weighing 0.47 gus attached at midheight to a
nylon fishing string weighing 0.17 gms which in turn {is anchored internally to
the fix-.res &t both ends of the member; (c) a mass-string system with a lead
shot at each of the locations 0.25L, 0.50L, and 0.75L from the bottom of the
member; and () . mass-string system with three lead shots at the member mid-

span. Th2 same nylon string was used in each arrangement, and each indfividual

)
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Tead shot in arrangements (c) and (d) wefghed the same as the one in arrange-
ment (b). The deflection-time plots were obtained by °plucking” the member
manually by a small amount either toward or away from the proximity probe at
the midheight. Th~ plot generated was used to calculate the frequency of the
member, and the system damping. Although no internal passive damper was
provided in arrangement (a) the deflection-time relationship exhibited a
gradual though slow decay due to the inevitable presence of structural
damping. This structural damping is also present in arrangements (b), (c), and
(d) besides that due to the internal dampers.

Figure 6 shows the cross-sectional view in "POSITION 1° of the member at
its midspan relative to the origin O of the x,y,z coordinate system and the
proximity probe. The deviation of the cross-sectional centroid from 0 is due
to the member imperfection which diminishes to zero at the member ends. Since
the direction of the applied initial deflection (plucking) is either along 0z
or parallel to it, it was decided to study the effect on the member dynamic
response of the various positions of the midspan cross section as shown in
figure 6. The member had a near-complete restraint with respect to axial
displacement at the ends owing to the rigid test bed at the bottom and a rather
rigid bracket at its top. Thus, for example, if the member was plucked along
0z with position 2 as the initial location, some small amount of axial
compression was induced causing the member to vibrate outside of the plane 0z
and also wobble to some extent. Although these three-dimensional effects are
not accounted for in the analysis presented earlier in this memorandum, the
response of the member parallel to or in line with 0z recorded experimentally
compared favorably well with the corresponding analytical results as discussed
later. The other imperfection positions, 3 and 4, in which the member was

tested are also shown in figure 6.
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Table 1 presents a summary of the results based on conducting experiments
on the partially restrained member with various imperfection positions (see
fig. 6) and in the absence or presence of damping devices (see fig. 5). The
test results are numbered 1 through 8 each of which is an average of three
separate tests. Tests 1 through 4 were conducted in the absence of damping
devices for the four imperfection positions 1 through 4, respectively. The
amount of structural damping was measured by the logarithmic decrement method
(see ref. 6) and is sumarized in appendix D as it applies to the problem under
consideration. The damping ratio { defined in appendix D is also given in
table 1 and 1s calculated from the experimental deflection-time response curve
of the member at {ts midspan. The natural frequency of the member {s also

calculated using the same curve and {s tabulated as f,. Tests 5 and 6 were

conducted with the damping device (b) shown in figure 5 with imperfection posi-
tions 1 and 4, respectively. Tests 7 and 8 were conducted with {mperfection

position 4, and with damping devices (c) and (d), respectively.

I !r‘il i

:Hj‘jr

Effect of Imperfection on Member Vibration

In the absence of damping devices, the effect of the various imperfection
positions shown in figure 6 on the member dynamic response may be observed by
comparing the [ and the f, values for tests 1 through 4. The ¢ values
due to structural damping range from 0.0034 to 0.0183. The f, values vary
from 3.16 to 4.10 Hz. It should also be noted that the smallest ¢ value
(0.0034) among these four tests does not correspond to the maximum f, value.
It is apparent, therefore, that the effect of the {mperfection position on the
natural frequency of the member 1s significant. The ax{al end restraints, and
three-dimensional deflection and wobbling of the member even though it {s
plucked only in one plane, appear to be the main causes of the observed varia

tion in the f, values. The dynamic spatial response of the member brings
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into play the strong axis flexural stiffness of the end restraints as well as
additional spatial damping effects which alter the f, values. In the
presence of damping device (b), tests 5 and 6 show that the imperfection posi-
tion 4 results in higher damping and natural frequency values (e.g., larger

¢ and f, values) as compared to those for the position 1. This type of
behavior may again be attributable to the attendant spatial effects.

Effectiveness of Passive Dampers

Test 4, 6, 7, and 8 were all conducted with imperfection position 4 (see
table 1 and fig. 6) with damping types (a) through (d), respectively, as shown
in figure 5. The ¢ and f, values are given in table 1 and the envelopes of
the deflection-time response curves are presented in figure 7 in which 4 s
the normalized midspan amplitude parallel to the 0z axis (see fig. 6) and t
is the time in seconds. The outermost pair of curves in figure 7 represented
by solid lines corresponds to damping type (a), that is, structural damping
only. The curves for damping types (b), (d), and (c) are represented by
dashed, dash-dot, and dash-dash-dot lines, respectively. Clearly, the damping
type (c) with a lead shot at each of the locations x = 0.25L, 0.50L, and 0.75L
is the most effective of the ones considered in terms of its ability to absorb
energy and thereby reduce vibration. It should be noted, however, that the
Guping types (c) and (d) result i{n nearly identical a-t envelopes up to
about t = 1.5 sec, after which type (c) shows a s1ight superiority over type
(d), although they may be considered practically the same. Furthermore, as
seen from table 1, the g value for type (d) is greater than that for type (c)
while the f, value for type (c) is smaller than that for type (d). Again,

the spatial effects may be a cause of such response.
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COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

With relatively small values of the damping ratio ¢ such as those for
tests 1 through 8 given in table 1, a significant variation of the natural
damped frequency of the member with { cannot be expected as evident froa
equation (16). Thus, 1t is concluded that the variation in f, values as seen
from table 1 {s attributable primarily to the spatial effects mentioned
earlier. To see how well the frequency predictions from the theoretical
analyses presented earlier in this memorandus compare with those observed
experimentally, the physical dimensions, the material properties, the end
restraint stiffness, and the ¢ values from table 1 were fed into the computer
programs developed specfally for this purpose. The f, values from the exact
solution, the approximate analytic solutfon (involving eq. (28)), and the
finite-difference solution for all the eight tests were found to be 3.58, 3.63,
and 3.52 Hz, respectively. The theoretical analyses were conducted on a member
with no initial imperfections. These theoretical f, values are in very good
agreement with the average experimental f, value of 3.42 Hz for the eight
tests in table 1. Also, the experimental fa values are in the range 3.16 to
4.10 Hz and all of the theoretical predictions are within tkis range.

A comparison of normalized deflection-time curves for a time interval of
1 sec obtained from each of the three analyses was also made to those obtained
experimentally. During the time interval considered, the theoretical predic-
tions were found to be in very good agreement with the experimental results.
It should be recognized, however, that without incorporating into the
theoretical analyses all of the existing spatial effects mentioned earlier, the
theoretically predicted deflection-time curves will deviate from the
experimental ones over longer intervals of time (such as of the order of 2 to 3

<ec). That this would be the case may be seen by comparing the ¢ values and
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the A-t envelopes in figure 7 for tests 7 and 8, Any of the three
theoretical analyses presented for a member without spatial effects will
predict a greater decay with time of the deflections for test 8 due to its
larger ¢ value of 0.0354 compared to that for test 7 with a ¢ value of
0.0296. The a-t curves for these two tests, in figure 7, show that beyond
t = 1.5 sec approximately, the results are on the contrary. For a more
accurate theoretical prediciton of the overall deflection-time response of the

member, therefore, a three-dimensional analysis should be formulated.

SUMMARY AND CONCLUSIONS

The following is a brief summary and some conclusions based on the outcome
of the research reported herein:

1. Explicit formulas for predicting the elastic buckling load and the
natural frequency of columns with partial rotational end restraints are
developed. The buckling load formula gives results nearly identical to those
from the exact, and the finite element techniques. The natural frequency
formula also gives results nearly identical to those from the exact analysis.

2. The natural frequency predictions from the formula developed, the exact
analysis, and the finite-difference formulation presented are all in good
agreement with those observed experimentally despite the presence of signifi-
cant axial member end restraints and the attendant spatial effects in the
member response.

3. The member deflection-time response, with a zero axial load, from the
theoretical analyses 1s in very good agreement with that observed experimen-
tally for about four cycles of vibration beyond which some deviation is
expected due to the spatial and axfal end restraint effects not included in the
analyses.

4. The three lead shot configurations provided considerably greater damping
than the single lead shot damper.
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APPENDIX A

TERMS IN THE MATRIX OF EQUATION (21)
In this appendix, the 16 terms defining the matrix of equation (21) are

given as follows:

a1 = 31
312 = 334 = 0
a1 = - E16f
a2 = - Ky

223 = E1p a

34 = - KB2

231 = cos Byl —_
asp = sin gL
a33 = cosh Byl
834 = sinh gL
841 = EIpy cos gL - Kpy sin gyl
242 = EIpy sin g1l + Kpy cos gyl

843 = EIp§ cosh gL + Kgp sinh gl

EEAT, SRR i

i
@“M'Jm‘
1 .

244 = EIB3 sinh gL + Kpy cosh gyl



are defined in this appendix for M = 6,
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As an exa=ple, the varfous terms of the matrix [r] used in equatfon (39)

I‘ll" Fss B 6b1 - sz - 2b3 - b4 - bl bs

Typ ® Tp3 = T34 = Tgg = - 40y + b,

Ty3 = Tpq = T35° by

Tyg = T15 = Tp5°0

Tpp ° T33 = Tgq = 60y = 2by - 2b3 - b,

]
roj x

+
nj <

The various teras are as follows:

The terms by and b, are defined by equations (42) and (43), respectively.

b
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APPENDIX C

DERIVATION OF wy | EXPRESSION

The wi ; expression given by equation (45) s derived 1n this appendix.
With:

2
3 (Y04 - ¥(x0]) = 5 (0000 ¢ 223 (x,0)

3
(at)?
+-‘16- [x,,0(at)] (1)

suppose that equation (1) also holds on the fnitfal line, that {s,

4 2
E1 2 (w,,0) * P[L;— (x,0) + ¢1]
X X

a2

o (x1.0)+c-2—:-(xi.0)-0 (c2)

X

If ¢(x;) 1in equation (6) exists, then:

--.E_!..d_T (x «{__2-.(1 +¢] (C3)
in which the initial condition (7) 1s already used. Using the central differ

ence expressions for the second and fourth order ordinary derivatives of

¢(x1) in equation (C3) results in;
2
3w EI 1
—7 (xp0) = o ¥ (0. = S0p_y * 60y - By *+ 0y,,)

p 1
A (01 = 200 % 0y ) ¥ °1] (c)
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Substituting equation (CA) into equation (C1), and rearringing gives:
(At)z El
w(xyty) = w(x.0) - LY CPRRURRL R IRE WY
2
(at)” P |1
B B L_z (01 - 20, % 05,) + ¢1] (c8)

which takes the form of equation (45) {f congensed by using equations (46)
through (48).
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APPENDIX D

EQUATION FOR DAMPING RATIO
The logarithmic decrement method (see ref. 6) was used to calculate the
damping ratio ¢ defined as:

c=C (01)

in which C {s the damping coefficient and C. is the critical damping factor
given by:

¢ = 2,’5191\ (D2)

The damping ratio was calculated using the following equation:

ge—>% (03)

Jiza? + &

in which & 1is given by:

*1
&= 1n -x—- (M)
2
where x; and x, are the successive amplitudes of vibration as defined in
reference 6. Each [ value was obtained by taking an average of five §

values from each deflection-time plot.
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TABLE 1.- SUMMARY OF EXPERIMENTAL RESULTS

- ..

BRI

-m1.ﬂ Ny g v

e | oy | T | < |
g. 6) (Hz)

1 a 1 0.0166 3.43

2 a 2 .0049 4.10

3 a 3 .0183 3.16

4 a 4 0034 3.51

5 b 1 .0173 3.23

6 b 4 .0053 3.45

7 c 4 .0296 3.20

8 d 4 .0354 3.30
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FIGURE 3 Schematic of Test Specimen and End Fixture
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