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A theoret ica l  and experimental stuQ o f  slender tubular  c o l m s  f o r  

possible use i n  space st ructures i s  conducted i n  the presence o f  p a r t i a l  rota- 

t i ona l  end res t ra in ts .  H e w  e x p l i c i t  formulas are derived f o r  c q u t l n g  the 

buckl i n g  load and the l a r e s t  natural  frequency o f  pe r fec t l y  s t r a i g h t  u n i f o m  

e l  as t i c  d e r s  w i th  ro ta t iona l  end res t ra in t s  possessing l i n e a r  momnt- 

r o t a t i o n  character is t ics.  An exact so lu t ion  i n  the form o f  a transcendental 

equation, and a numerical so lu t ion  using second-order f i n i  te-d i  fferences a re  

a lso presented. The presence of an i n i t i a l  imperfect ion i s  a lso incorporated 

f  nto the numerical procedure. Each o f  the solut ions presented or ig ina tes  from 

the p a r t i a l  d i f f e r e n t i a l  equation and the associated boundary condit ions fo r  

the problem. It i s  shown t h a t  the buckl i n g  load and the natura l  frequency 

f o m l  as developed are h ighly  accurate. V ib ra t ion  t e s t s  are conducted on an 

imperfect tubular steel member i n  the absence o f  an a x i a l  load. A danping 

concept consis t ing o f  a string-mass assembly i s  explored i n  a feu of the tests, 

i n  addi t fon to the s t ruc tura l  darrping present i n  the system. Three passive 

damping conf igurat ions were investigated; one with three slnall equid is tant  lead 

shots attached t o  a s t r i n g  ins ide  the tubular  member, one w i t h  the three lead 

shots attached a t  the center o f  the tube, and the other  w i t h  one lead shot a t  

the center o f  the tube, The three lead shot conf igurat ions both provfded con- 

siderably greater darrping than the s ing le  lead shot damper. 
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INTRODUCTION 

The ana lys is  f o r  buck l ing  and na tu ra l  v l b r a t i o n  o f  e l a s t l c  c o l m s  w t t h  

pinned o r  f i x e d  end cond i t ions  i s  e l l - k n w n  (see refs. 1 and 2) .  The prac- 

t i c a l  columns i n  r e a l  space s t ruc tu res ,  however, seldom possess such i d e a l  

boundary condi t ions.  The connections and t h e  ad jo i n i ng  laerabers uh ich  frame i n  

a t  t he  ends o f  a  t y p i c a l  c o l m  i n  a space s t r u c t u r e  p rov ide  r o t a t l o n a l  

r e s t r a i n t s  which a f f e c t  the  behavior o f  t h e  column i t s e l f .  The buck l ing  l o a d  

o f  a p a r t i a l l y  r es t ra i ned  c o l m  tuuy be obtained by us ing t he  c l a s s i c a l  eigen- 

value approach leadf  ng t o  a transcendental equat ion (see f o r  exaaple, ref. 3) 

which uus t  be solved i t e r a t i v e l y .  Also, i t  i s  poss ib le  t o  f o r rm la te  an exact  

s o l u t i o n  f o r  determining the  na tu ra l  frequency o f  such a member i n  t he  form o f  

a  complicated transcendental equation which r u s t  a l so  be solved i t e r a t i v e l y .  

Th is  paper presents an a u t c m  o f  a  t heo re t i ca l  and exper inenta l  i n v e s t i g a t i o n  

o f  tubu la r  members res t ra i ned  p a r t i a l l y .  New e x p l i c i t  fo r rm las  a re  der ived f o r  

c q u t i n g  t he  buck1 i n g  l oad  and Ule natu ra l  frequency o f  p e r f e c t l y  s t r a i g h t  

un i form e l a s t f c  &ers having p a r t i a l  r o t a t i o n a l  end r e s t r a i n t s  possess in j  

1  i near moment-rotation cha rac te r i s t i c s .  An exact s o l u t i o n  f  n  the  form o f  a  

transcendental equatf on, and a numerical s o l u t i o n  us ing second-order f f  n i t e -  

d i f fe rences  a re  a l so  presented. The presence o f  i n i t i a l  imper fec t ion  i s  a l so  

incorporated i n t o  the nlrmerical procedure. Each of t he  so lu t ions  presented 

o r i g i na tes  from the  p a r t i a l  d i f f e r e n t i a l  equat ion o f  motion governing the  

dynamic response o f  the  column i n  the  presence o f  a constant a x i a l  l o a d  and 

t h e  boundary cond i t ions  represent ing the  r o t a t i o n a l  spr ings. The v i b r a t i o n  

t es t s  a re  conducted on an i u p e r f e c t  t ubu la r  s tee l  manber w i t h  r o t a t i o n a l  

e l a s t i c  end r e s t r a i n t s  and i n the absence o f  an a x i a l  load. The use o f  a  

damping concept i s  explored i n  a  few o f  the  t es t s ,  i n  a d d i t i o n  t o  t he  

s t r u c t u r a l  damping a1 ready present i n  the sys tm .  



PROBLEM STATEMENT AHD GWERNIWi  EQUATIONS 

Figure 1 shws schematically a slender coluan o f  length L w l t h  a hol low 

c i r c u l a r  crass section. The outer  diameter o f  t i le  sect ion i s  Do and the u a l l  

thickness i s  to. The c o l m  has an i n i t i a l  out-of-straightness given by G. 

A s t a t i c  a x i a l  load P i s  appl ied t o  the colmn.  Also, the  ends o f  the c o l m n  

are not  allowed to t r ans la te  l a t e r a l l y ,  and possess p a r t i a l  m t a t l o n a l  

r e s t r a i n t s  each having a ro ta t i ona l  spr ing s t i f f ness  o f  K in-lb/radian. The 

material  o f  the c o l m n  i s  e las t i c .  The governing d i f f e r e n t i a l  equation o f  

e q u i l i b r i l m  fo r  the  amber sham i n  f i g u r e  1 may be w r i t t e n  as: 

i n  which 

w( w , t) 1 a tera l  d i  spl aceraent 

i ( x )  = i n i  t i a l  out-of-straightness, o r  irrrperfectton 

E I = f lexura l  r i g i d i t y  o f  the column 

P = ax ia l  load 

P = mass per u n i t  length of the c o l m n  

C = damping c o e f f i c i e n t  

Equation (1) without the term invo lv ing  6 can be found i n  the standard 

t e x t s  on s t ruc tura l  dynamics (see, f o r  example, re f .  2 ) .  As evident fraa the 

l a s t  term i n  equatlon (11, the system damping i s  a s s w d  to be propor t ional  t o  

the ve loc i t y  a t  any given time. 

BOUNDARY AND I N I T I A L  CONDITIONS 

The boundary condit ions f o r  the problem shown i n  f i gu re  1 are as fo l lows:  



Equations (2) and (3)  represent zero l a t e r a l  t r ans la t i on  of the e r  ends. 

Equations ( 4 )  and ( 5 )  are the natural  boundary condit ions dependent upon the  

f l exu ra l  s t i f f ness  o f  the c o l m  ends and the r e s t r a i n t  m n t s  developed by 

the ra ta t lona l  springs. 

The i n l t i a l  condit ions For obtaining the natural  freauency o f  the c o l w n  

are taken as fol lows: 

i n  which 4 i s  a funct ion of x and the t ~ m  P, K, E I ,  and L. The 

i n i t i a l  condi t ion given by equation (6 )  states tha t  a t  t f m  t equal t o  zero, 

the column has been displaced ( "pluckedn) m s u l  t i n g  i n  a shape given by a func- 

t i o n  o f  x, the appl l e d  axfa l  load P, the  sprlng constant K, the flexural 

r i g i d i t y  E I ,  and the length L. Equation ( 7 )  imposes a zero i n f t f a l  ve loc i t y  

condi ti on. 

EXACT SOLUTION 

For the case of no l n f t i a l  luperfect lon, t ha t  I s ,  i 0. equatlon (1) can 

be solved by the separation of var lables technique by Jet t ing :  

S ~ ~ b s t l t u t l n g  equation (8) I n t o  (1) leads to the  Qol lowlng p a l r  o f  ordinary 

d l  f f e ren t i a l  equatl ons (see ref .  4 )  : 
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1 n which A i s  a  parameter to be determined, u i s  the  undamped c l ~ u l a r  

frequency given by: 

and k i s  given by: 

The exact so lu t ion  t o  equation (9) i s  given by ( r e f .  4 ) :  

Y(U) = B1 cos plx + B2 s i n  plx + B3 cosh f3.p + B4 s inh  p2x (1 3) 

i n  which 

and 81 t h m g h  B4 are constants of in tegrat ion.  The so lu t ions  to equa- 

t i o n  (10) are a l l  o f  the form ( r e f .  6) :  

i n  which F( t )  depends upon the p r o b l m  inpu t  parameters, U, and the i n l t l a l  

condit ions ( 6 )  and ( 7 )  invoked v i a  equation (8 ) .  The damped c l m l a r  frequency, 

ud, IS given by ( r e f .  6): 

i n  which c i s  the d q i n g  r a t i o .  



The soluttons based on equatlon (13) for  ldea l lzed plnned o r  f i x e d  end 

condft ions are given 1 n the 1 i t e r a t u r e  (see ref. 41. Here, an exact so lu t i on  

f o r  a column w l th  p a r t i a l  r es t ra in t s  and having t h e  boundary condl t ions g iven 

by equations (2) through ( 5 )  I s  presented. Using equatlon (81, these condl- 

t i  ons reduce t o  the f o l  lowing ones: 

Subst i tu t ing  equation (13) I n t o  equations (17) through (20) r e s u l t s  I n  a m t r l x  

eq ratfon o f  the type: 

i n  which the aid t e r n  are given i n  appendfx A. Set t ing  the  detennlnant o f  

the matrfx i n  equatlon (21) equal t o  zero leads t o  a complicated transcendental 

equatlon. For a gfven value o f  the ax ia l  load P, the c o l m n  dlmensfons and 

material  propert ies, and the spring constant K, the resul t i n g  transcendental 

equatfon may be solved I t e r a t i v e l y  f o r  the lowest n o n t r l v l a l  value o f  X.  A 

subs t l tu t fon  o f  t h i s  z, value fn to  equatlon (11) glves the c f r c u l a r  frequency 

o f  the partially restrafned co lmn.  To f l n d  the calunn s t a t l c  buckl ing load, 
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h w v e r ,  the smal lest n o n t r i v i a l  value o f  P a u s t  be sought with A 0, sfme 

the frequency o f  a c o l m  becomes zero when the ax ia l  s t a t l c  load equals the  

buckl I ng 1 ad. 

Uhen the ax ia l  load P i s  less  than the buckl l n g  load, the deflection 

versus time re la t ionsh ip  may be found by substituting the  co value, ascer- , 

ta ined by the i t e r a t i v e  procedure, i n t o  equatlons (13) and (15) which, i n  turn, 

mst be subst i tu ted i n t o  equation (8) .  

The disadvantage o f  the exact so lu t i on  I s  t h a t  i t  can be obtalrted only  

through t r i a l  and e r ro r .  I n  the fo l low ing section, e x p l i c i t  f o m l a s  f o r  

conputing the buckl i n g  load and the natural  frequency o f  the p a r t i a l l y  

rest ra ined col  rran are derived. 

BUCKLING LOAD AND NATURAL FREQUENCY FOWLAS 

I n  t h i s  section, new e x p l i c i t  formulas f o r  calculating the buckl lng l oad  

and the natural  frequency o f  the p a r t i a l l y  res t ra ined c o l m n  s h m  i n  f l g u r e  1, 

i n  the absence o f  i n i t i a l  imperfections, are derived and are based on a h l g h l y  

accurate assuned umde shape o f  the colmn.  The procedure involves se lec t ing  a 

tr lgonolaetric expression which s a t i s f l e s  the boundary condit fons a p r i o r l ,  and 

then using Galerkins' orthogonal 1 t y  c r i  ter lon.  

L e t  the so lu t i on  t o  equation (9) be taken i n  the following form: 

I n  which Al and $ are  constdnts. P ~ i s  expression s a t i s f l e s  the  bwnday 

condl t ions  (171 and (18). The sf ne terra alone would represent a plnned m r  

whi le  the term i n  the parentheses approximutes a c o q l e t e l y  f f x e d  end medwr. 

A combfnation of the two functions has no t  k e n  explored by arty preuloos inues- 

t i g a t o r  f o r  sfnul . t ing the deflected shape of t h e  umber with end condt t lons 
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sotaewhere between pinned and f i xed  cases, t h a t  i s ,  fo r  the  p a r t i a l l y  r es t r a i ned  

end condi t ions.  Equation ( 2 2 )  represents the  appmximate fundmenta l  mde o f  

t he  member, thus the buck l ing  l oad  and the  na tu ra l  frequency expressions are  

associated w i t h  t h i s  m d e .  F u r t h e m r e ,  due to the  syumety of the Y 

expression about the member midspan, i t  i s  s u f f i c i e n t  t o  enforce only one o f  

the cond i t i ons  given by equations (19) and (20). S u b s t i t u t i n g  Y from 

equat ion (22) i n t o  equat ion (19) r e s u l t s  i n  the f o l l o w i n g  r e l a t i o n s h i p  

between A1 and h: 

S u b s t i t u t i n g  equation (23) i n t o  (22) gives: 

If equation (24)  were exact so lu t ion ,  i t would s a t i s f y  equat ion (9) exac t l y .  

Since i t  i s  an 3pproxfmate so lu t ion ,  i t s  s u b s t f t u t i o n  i n t o  equat lon (9) r e s u l t s  

i n  an e r r o r  expression given by E as fol lows: 

P X  2nx 
2 2 

n X 
16q cos -) L + % ( - s i n  - L + 4r, cos - L 

L 

i n  which: 

Invok ing  use o f  Gal e r k i n '  s o r thogona l i t y  c r i  t e r l a n  gf ves the f o l  lowlng 
equatlon: 

E s i n  - + q 1 - COS - I,'[ ( *lJX L )I dx 0 



Upon pe r f om lng  t he  Integration, rearranging, and n o t l n g  t h a t  A1 $ 0 f o r  tha 

n o n t r i v i a l  so lu t ion ,  an e x p l l c l t  expmsslon f o r  x I s  obtalned from equa- 

t l o n  (27 ) .  Using t h l s  x expression, and no t l ng  t h a t  t~ 2t f ,  where f l s  

the  undamped na tu ra l  frequency I n  Hertz, the  fo l low1 ng f o m l a  i s  obtalned: , I  

I 
- 1 $ -  

I jE1 
f a -  - 

2L P 
' 1 2 9 2 

1 2 ( r E I )  + 32 EIKL + 5 (KL) J 
O f  course, the damped frequency can be obtafned by us lng  equat lon (16). 

A buck l ing  load  f o m l a  f o r  the  column shown i n  f i g u r e  1 can be obtalned 

by s e t t i n g  f fm equation (28) equal t o  zero, s lnce t he  frequency o f  t he  

column approaches zero as the  a x i a l  l oad  ap, a c h e s  the buck l lng  l a d .  Thus, 

s e t t i n g  the  r l g h t  s ide of equat lon (28)  to zero, s lmp l l f y l ng ,  and so l v l ng  f o r  

the  c r l  t i c a l  P value leads to: 

1 2 ( n ~ 1 ) ~  + 80 EIKL + 1 2 ( ~ L )  
c r 

1 2 ~ 3 ~ 1 ) ~  + 32 EIKL + 3(KL) 2 

F o m l a s  (28) and (29) can be used t o  p r e d l c t  t he  na tu ra l  frequency, and the 

e l a s t i c  buck l ing  load  o f  a  per fect  column w i t h  equal p a r t l a l  end restraints. 

The f o m l a s  der lved above are d i r e c t l y  app l f cab le  I n  t he  absence o f  an 

l n l t l a l  Imper fect ion.  I t  i s  well-known ( r e f .  3)  t h a t  the maxinars l oad  whlch an 

Imper fect  e l a s t f c  column may carry ,  I n  t he  Dresence of p lnned o r  f l x e d  end 

condl t lons,  asymptotically approaches the  Eu le r  buck l l ng  l oad  o f  the c o r n -  

spondlng per fec t  h e r .  A1 t h w g h  t he  d e t a l l s  a r e  no t  glven hem, It can be 

shown t h a t  the  same conclusfon I s  appl l c a b l e  to the  partially restrained column 

consldered hereln.  Furthermore, s l m l l a r  reasoning i s  appl l c a b l e  to t he  evalua- 

t l o n  o f  the lowest na tu ra l  frequency o f  both p e r f e c t  and f ape r f ec t  Prembers. 



COCBARISON FOR LIUlTING BOUNDARY CONDITIONS 

I f  the end spr lng  stiffness K I s  taken as zero, the l l m l t l n g  case o f  a 

column w l t h  plnned ends I s  obtalned, It can be v e r l f l e d  t h a t  If K I s  s e t  

equal t o  zero I n  equatlons (28) and (291, the r e s u l t f n g  f and PC, values 

a r e  the  exact s o l u t i o n  f o r  pinned ends (see refs.  1, 2, and 5 ) .  For  a f l x e d  

end column, the value o f  K equals I n f l n i t y .  To eva luate f f o r  t h i s  l l m l t l n g  

case, the numerator and the  denominator t e r n  under the  radlca!  s i gn  should 

f l r s t  be d iv lded  by K~ and the r e s u l t i n g  expresslon evaluated as K 

approaches I n f i n i t y .  Using t he  expression fo r  f thus obtalned, t he  c l r c u l a r  

frequency u f o r  a rwmber w l t h  zero a x l a l  l oad  I s  found to be as f o l l o r s :  

which I s  only s l i g h t l y  d i f f e r e n t  fm the exact u expresslon given I n  

reference 5 w f t h  a c o e f f f c l e n t  o f  22.40 outs lde o f  the  r a d i c a l  t e  7 .  To 

eva luate Pcr w i t h  an l n f l n l t e  value f o r  K, t he  numerator and t he  denaslnator 

t e r n  on the r i g h t  s ide of equatlon (29) should f i r s t  br d l v l ded  by K* and 

the resu l  t i n g  expresslon evaluated as K approaches I n f l n i  t y .  Th is  process 

1 eads t o  the exact buckl i n g  load  of a f l x e d  end column gfven I n  re ference 1. 

INTERACTION RELATIONS 

F lgure  2 presents nondlmenslonal 1 n te rac t l on  curves r e l a t l n g  the  nondlmen- 

s lona l  frequency ? and I t s  square (?12 w l t h  nc a x i a l  l oad  (P 0 0 i n  

f i g .  11, and the  buckl i n g  load  , to the  nondlmenslonal sp r l ng  constant  , 
de f ined  as fo1 lows: 



i n  which f i s  given by equation (28)  w i t h  P 0; f, i s  the  value o f  f 

w i t h  K =; PCr i s  given by equat ion ( 2 9 ) ;  and P, i s  the value o f  PC, 

w i t h  K m .  AS seen from t h i s  f i gu re ,  ? increases fm about 0.433 t c  1.0 

as i s  va r ied  between zero and i n f i n i t y .  The v a r i a t i o n  o f  (?12 w i t h  

i s  a lso   show^. S i m i l a r l y ,  increases f rwn 0.25 t o  1.0 as I? i s  va r i ed  

between zero and i n f i n i t y  , v i  z., from the  pinned t o  the  carp1 e t e l y  f l x e d  end 
2 

cond i t i on .  Substant ia l  increases i n  ?, (2 )  , and occur as I? I s  

.Increased from zero t o  about 20, beyond which only ana l l  increases a re  observed 

even f o r  very s i g n i f i c a n t  i n c m n t s  i n  I? . This shows t h a t  what my appear 

t o  be a nominal end r e s t r a i n t  may ac tua l l y  prov ide a considerable degree o f  end 

f i x i t y  r a the r  than a near l y  pinned cond i t i on .  I n  f a c t ,  a 'moderate' amount o f  

end r e s t r a i n t  may provide near-complete end f i x f t y .  

As may be seen from equation ( 2 8 j ,  the presence o f  an a x i a l  l oad  P i n  

the  presence o f  p a r t i a l  end r e s t r a i n t s  would reduce t he  na tu ra l  frequency f. 

Thus, the ?, and (f12 versus k r e l a t i o n s  w i t h  P > 0 would f a l l  below 

those shown i n  f i g u r e  2.  

A conrparison o f  the versus r e l a t i o n  shown i n  f i g u r e  2 was made 

w i  t h  a f i n i t e  element so l u t i on  o f  the problem where t he  c o l m n  was d l v i ded  i n t o  

a t o t a l  o f  ten  segments. The r e s u l t s  were found t o  be a l m s t  i d e n t i c a l ,  The 

v a l i d i t y  o f  the  f o m l a  ( 2 9 )  was a lso  v e r i f i e d  by computing a few o f  the  p a i n t s  

on the  versus r e l a t i o n  i n  f i gu r c  2  using an exact  eigenvalue s o l u t i o n  

discussed e a r l i e r  i n  t h i s  paper, Again, the  r e s u l t s  w e r e  almost i d e n t l c a l .  

FINITE-DIFFERENCE SOLUTION 

Using second-order cen t ra l  f i n i  t e - d i  f ference expressions (see ref. 71 ,  t h e  

p a r t i a l  d i f f e r e n t l a l  equat ion (1) my be w r i t t e n  as fo l l ows :  
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I n  which: 

h panel length along the x-axis o f  the c o l u n  ( f fg .  1) 

A t  = tlm internal  

+(xi) second derivat ive re l a t i ve  to x o f  the laperfect lon 
functlon i 

x i  = ih, f o r  each I = 1, 2, 3, ... 
The subscript i refers to the lth panel po in t  over the d a a l n  0 < x < L, and 

I .  

the subscript j refers to the n&r o f  tlm I n c m n t s  such that the time / .  , , 
I - 

1 

a t  j i s  given by the f o l l w i n g  equatlon: 

tj = j ( ~ t ) ,  f o r  each j = 0, 1, 2, 3, .. . 

Simll  ar ly  , the boundary c o n d i t i o ~ ~ s  (2 1 thnwgh ( 5 )  can be exp=ssed i n  the 

f ini te-dif ference form as f o l l w s :  

I 

Applying equation (34) a t  I = 1 2, 3 . . . , 1 and Invoking the condi- 
I i 
I i  

t ions (35) through (38) leads to the fol lowing matrix equatlon: I 

j 
i 
I 
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(4 ~ + 1  1 a r I j  + ~ ~ ( ' ~ ~ j - 1  1 + {Pi) 

i n  which: 
* 

and [rl i s  a s-tric coef f i c ien t  mat r lx  of the  order (K.1) by (K.1). 

Appendix B defines the  te rn  o f  t h i s  matr ix  f o r  I4 = 6 as an exenple. 

Equation (39) be used t o  p red ic t  the  l a t e r a l  def lect ions w l  J+I i f  

y #j and w i  ~ - 1  are  knwn. To avoid having a negative time i n t e r v a l  be t o  

the use of the centra l  f in i te -d i f fewnce s c h e  vtren s t a r t i n g  the recursion 

indicated i n  t h i s  equation, the fo l lowing special forward star t -up di f ference 

equation fo r  wi i s  derived i n  appendix C: 

i n  which: 



I n  using the recursive equation (391, the panel length h and the  ti= Incre- 

ment b t  should be kept m a l l  to avoid numerical i n s t a b i l i t y  o f  the solut ion.  

For the member tested i n  the laboratory described l a t e r  i n  t h i s  paper, it was 

found s u f f i c i e n t  to use h = L/6, and ~t a 0.001 sec to ensure both con- 

vergence and numerical stabi 1 i t y  . 
EXPERIKENTAL INVESTI6ATION 

The experimental por t ion  of the i nves t i ga t i on  consisted o f  conducting 

several natural  v ib ra t ion  tes ts  on a tubular  steel m e r  o f  about 12 ft 

length, and outer and inner diameters o f  0.50 and 0.37 in., respect ively.  The 

ends were p a r t i a l l y  rest ra ined by specia l ly  designed connections, and no ax ia l  

load was applied. The steel member was used since very slender graphite c o ~ c  

pos i te  tubes are not y e t  avai lable, and the proceduws used i n  t h i s  invest iga-  

t i o n  are good f o r  both materials.  The saber had scune i n i t i a l  imperfect ion due 

t o  manufacturing and hand1 i ng processes. 

F i  gum 3 shws sketches o f  the member tested, and the d e t a i l s  o f  the end 

connections. Each end connection was a two-piece assembly. One piece was a 

steel  blade 1-1/2 in .  long w i th  a 3/16 in.  x 1/2 i n  cross sect ion welded to a 

steel base p late.  The other piece was a steel c l e v i s  designed to f i t  snugly 

over a l l  bu t  114 in .  o f  the blade and fastened to it by screws f i t t e d  through 

two d r i l l e d  holes. The exposed 1/4 in .  o f  the blade, t h i n  i n  one d i r e c t i o n  

(3116 in.) bu t  t h i ck  i n  the other (112 in.) provided p a r t i a l  r o ta t i ona l  

r e s t r a i n t  i n  one plane o f  v ib ra t i on  and almost t o t a l  ro ta t i ona l  r e s t r a i n t  i n  

the  orthogonal plane. This design provided the nrember a pre fer red  direction o f  

v ibrat ion,  natuely, about the weaker ax is  o f  the blade. The top end o f  the  

c l e v i s  was a 1-in. threaded rod which screwed i n t o  the steel  arember. The 

mmber and the end f i x t u r e s  were threaded so tha t  one end had r ight-hand 

threads and the other had le f t -hand threads. These opposite thread d i rec t ions  



a l lcued the  s y s t m  to a c t  l i k e  a turnbuckle so t h a t  Ute top and the b o t t a  end 

f i x t u r e s  could be eas i l y  a1 i g m d  during assembly. 7he upper base p la te  uas 

bo l ted  t o  a heavy bracket which i n  turn was bo l ted  to a backstop, and the lafar 
I I 

base p l a t e  was bo l ted  to the floor d i r e c t l y  beneath the upper one. The c l e v i s  I 

I 

por t ions o f  both end f i x t u r e s  were screued i n t o  the  appropriate ends o f  the 

member. The upper end o f  the mdxr was then attached by the clev is-b lade 
- I 

j o i n t  to the base plate. The turnbuckle feature o f  tha systea uas then used to 

a l i g n  the attachnent holes on the  lower end clevis-blade j o i n t  so t h a t  no a x i a l  

tension o r  caqwession was induced i n  the system. 

The instrumentation used i n  the tes ts  consisted o f  a p r o x i d t y  probe, 

proximi ty  probe target, and a s t r i p  chart. The proximiQ probe was auwnted on 

a bracket a t  midspan o f  the tube and i n  l i n e  wfth the p m f e d  ax is  o f  v i b r t i  

t ion .  A f l a t  c i r c u l a r  piece o f  a l m i n u n  was bonded to the member a t  midspan 

f o r  use as a Qrget f o r  the proximi ty  probe. A photo 1 inagraph s t r i p  c h a r t  

p l o t t e d  the r e l a t i v e  def lec t ion  versus tillre using de f lec t i on  data fm the i.2 - 
k - 
I ; 

proximity probe. 

Evaluation o f  End Restra int  S t i f f ness  

To evaluate the end r e s t r a i n t  ro ta t iona l  s t i f f n e s s  K expar imenbl ly ,  t h e  

setup shown schsnatical ly I n  f i g u r e  4 was used. The base p l a t e  dth the c lev is -  

blade j o i n t  (a) described e a r l i e r  i s  b o l W  to the t e s t  bed. A r i g i d  m i n d  

cancel l ing the shear i n  the connection and the steel  bar  betmen the po in ts  o f  I 

s teel bar ( b )  i s  screwed i n t o  the top o f  the  c lev is .  A cable (c )  i s  attached 

to the steel bar near i t s  top end and looped around the pul leys dB a,  f, g, and 

connected to the connection blade c lose t o  the bottom, as shown i n  the f igure. . 
Uhen a load W i s  suspended through the pu l ley  f, i t  introduces equal and 

opposite forces i n  the  horizontal por t ions (c  and h) o f  the cable, thus 

cable a t t a c b n t  whi le applying a pure bendi ng a x m n t  to t he  clevis-blade I .  

I 
I 

. 

1 ,  



connection. The e l im ina t ion  o f  the  fo rce  i s  necessary s ince the connection 

ro ta t i ona l  spr lng s t i f f n e s s  K i s  the slope o f  only the pure m n t  versus t h e  

r o t a t l o n  re la t ionsh ip .  A d i a l  gage was mounted a t  12 in.  frum the base p l a t a  

to measure the hor izonta l  deflections o f  the steel  bar  b f o r  successive irtcre- 

ments !n tt.3 appl ied load Y. The def lec t ions  thus measured were used f o r  

computing the  connection rotat ions.  The m a x i m  value o f  Y appl ied uas 

2.6 lb. F ive  tes ts  ere conducted by at taching the  shea+cancelling cable t o  

the lower c1 ?vis-blade a t t a c b n t  screw, and artother f i v e  wre conducted by a 

s i m i l a r  a t t t c h e n t  to the upper screw. The same n u b a r  o f  tests were a lso  

conducted on each o f  the top and the bot tan  end f i x tu res .  The average o f  these 

20 t e s t s  resu l ted  i n  a 1 inear  mcrpent-rotation re la t i onsh ip  fm uhich  the  

fo l low ing value o f  K was obtained: 

and was found t o  be s im i l a r  to t h a t  obtained fm approximate theo re t i ca l  

s t i  f fnes t  ca l  cu1 at ions us i  ng simp1 e bending theory. 

Natural V ib ra t ion  Tests 

A nunber o f  natura l  v i b r a t i o n  t e s t s  were conducted on the  p a r t i a l l y  

rest ra ined tubu lar  umber  shorn i n  f i g u r e  3 both wl t h  and wi thout  i n te rna l  

passive damping devices. Figure 5 s h w s  schematically the tubu lar  member rl th  

(a)  no i n te rna l  pass4ve damping device; ( b l  wi th  an i n te rna l  passive daaper f n 

the  form o f  a c lng le  lead shot welghing 0.47 gm attached a t  midheight to a 

nylon f i s h f n g  s t r i n g  ueighing 0.17 gas which i n  t u r n  i s  anchored i n t e r n a l l y  t o  

the  f irt,res b t  both ends o f  the umber; (c)  a mass-string system with a lead 

shot a t  each o f  the  loca t ions  0.25LB 0.50L, and 0.751. fm the bottota o f  t he  

member; and ( 4 )  a mass-string system w l t h  three l ead  shots a t  the sternber m i &  

span. Th? same nylon s t r i n g  was used i n  each arrangement, and each i nd i v idua l  



l e a d  shot I n  arrangements ( c )  and ( d l  w l g h e d  the  same as the orre I n  arrange- 

ment ( b ) .  The def lect lon- t lme p l o t s  were obtained by "plucking" the mePlber 

manually by a small moun t  e i t h e r  W a r d  o r  away fm the pmxltnf ty p m k  a t  

the  mldhelght. Tt,.- p l o t  generated was used t o  ca l cu la te  the frequency o f  t h e  

umber ,  and t he  s y s t m  damping. Although no l n t e m a l  passive dumper was 

provided I n  arrangement (a )  the de f l ec t i on - t i =  r e l a t l o n s h l p  exhibited a 

gradual though slow decay due to the  l n e v l  t a b l e  presence o f  s t r u c t u r a l  

damping. This s t r uc tu ra l  damplng i s  a l so  present i n  arrangements (b ) ,  ( c ) ,  and 

( d l  besldes t h a t  due to the l n t e m a l  dampers. 

F igure 6 shows the cross-sect ional  view I n  "POSITION 1' of the member a t  

i t s  mldspan r e l a t l v e  to the o r i g i n  0 o f  the  x,y,z coordinate system and t h e  

p rox im i ty  probe. The dev ia t ion  of the cmss-sec t iona l  cen t ro i d  frm 0 I s  due 

t o  the  member imper fect ion which diminishes t o  zero a t  t he  raember ends. Slnce 

the d i r e c t i o n  o f  the app l ied  i n i t i a l  d e f l e c t i o n  (p luck ing)  I s  e l t h e r  along Oz 

o r  p a r a l l e l  to it, it was decided to study the e f f e c t  on the laember clynarelc 

response of the var ious pos i t i ons  of the midspan cross sec t ion  as s h m  I n  

f i g u r e  6. The m b e r  had a near-complete r e s t r a i n t  w i t h  respect to a x f a l  

displacement a t  the ends w i n g  to the r i g t d  t e s t  bed a t  the bottom and a r a t h e r  

r i g i d  bracket a t  i t s  top. Thus, fo r  example, i f  the mernber was plucked along 

Oz wl th  p o s i t i o n  2 as the i n i t i a l  l oca t ion ,  some small m n t  of a x i a l  

compression was induced causlng the  W e r  t o  v l  b r a t e  w t s i d e  o f  the  plane Oz 

and a lso wobble to some extent .  Although these three-dimensional e f f e c t s  a re  

n o t  accounted f o r  i n  the analys is  presented e a r l i e r  i n  t h l s  memorandum, the 

response o f  the member para1 l e l  to o r  i n  1 i n e  w i t h  Oz recorded e x p e r l ~ n t a l l y  

compared favorably we1 1 w l  t h  the correspondi ng analytical r e s u l t s  as discussed 

l a t e r .  The other Imperfection pos l t lons ,  3 and 4, I n  whlch the member was 

t es ted  are a l so  s h m  I n  f i g u r e  6. 



Table 1 presents a s m y  o f  the w s u l  t s  based on conducting exper lmn ts  

on the p a r t l a l  l y  rest ra ined nrearber w i th  various laper fec t lon  posl t l ons  (see 

f l g .  6) and I n  the absence o r  presence o f  damplng devices (see f lg.  5 ) .  The 

t e s t  resu l t s  are nunbered 1 through 8 each o f  whlch I s  an average of three 

separate tests. Tests 1 through 4 wre conducted I n  the absence o f  damplng 

devices f o r  the fur imperfect ion posi t ions 1 through 4, respecttvely.  The 

amount o f  s t ruc tura l  damping was measured by the l o g a r l t h n l c  decrement method 

(see ref. 6) and i s  suanarized i n  appendix D as i t  appl l e s  to the  prablem under 

conslderatlon. The d q i n g  r a t i o  c def lned I n  appendix D i s  a lso  glven I n  

tab le  1 and i s  ca lcu lated from the experimental def lect ion- t lme response curve 

o f  the  member a t  i t s  mldspan. The natural  frequency o f  the ragmber i s  a1 so 

calculated using the sume curve and I s  tabulated as f e e  Tests 5 and 6 were 

conducted w i th  the damping device (b) shown i n  f i g u r e  5 w i t h  imperfect lon posi- 

t i ons  1 and 4, respect ively.  Tests 7 and 8 uere conducted w i t h  ipper fec t ion  

p o s i t i o n  4, and wf t h  damping devices (c )  and ( d l ,  respect ive ly .  

E f f e c t  o f  Imperfect ion on M e r  V lbra t fon  

I n  the absence o f  damping devices, the e f f e c t  o f  the various lmperfect lon 

posi t ions shown I n  f l g u r e  6 on the h e r  4ynamlc response nay be observed by 

camparing the r; and the fe values f o r  t e s t s  1 through 4. The c values 

due t o  s t ruc tura l  d a q l n g  range fm 0.0034 to 0.0183. The fe values vary 

from 3.16 t o  4.10 Hz. It should also be noted t h a t  the smal lest r: value 

(0.0034) m n g  these four  t es t s  does not  correspond to the maxlaum fe value. 

It I s  apparent, therefore, t h a t  the e f fec t  o f  the  imperfect lon pos l t l on  on the  

natura l  frequency o f  the &er I s  s lgn l f i can t .  The ax ia l  end res t ra in t s ,  and 

t h r e d i m e n s l o n a l  de f lec t ton  and rsobbllng o f  the raember even though i t  I s  

plucked only I n  one plane, appear to be the maln causes o f  the obsened varla- 

t4on I n  the fe values. The enamic spat la l  response o f  the  &r br ings  



I n t o  play the strong ax ls  f l exu ra l  stiffness o f  the end r e s t r a i n t s  as wel l  as 

addl t lonal  spatfal  damping e f fec ts  which a l t e r  the fe values. I n  the  

presence of damplng devlce (b),  tes ts  5 and 6 show t h a t  the Imperfectton posl-  

t l o n  4 resu l t s  I n  hlgher damping and natural  frequency values (e.g., l a r g e r  

c and fe values) as comparvd to those for the pas i t l on  1. Thls type of 

behavior may agaln be a t t r l b u t a b l e  to the attendant spat ia l  e f fec ts .  

Effectiveness o f  Passlve Darapers 

Test 4, 6, 7, and 8 were a l l  conducted w i t h  f~r tper fect lon p o s i t i o n  4 (see 

tab le  1 and f ig.  61 w i th  damping types ( a )  through (d l ,  respect lve ly ,  as sham 

i n  f i gu re  5. The q and fe values are given i n  tab le  1 and the envelopes of 

the def lect ion-t ime response a w e s  are presented i n  f i gu re  7 I n  which A i s  

the normalized midspan amp1 i tude para1 l e l  to the Oz ax ls  (see f i g .  6) and t 

i s  the time i n  seconds. The o u t e m s t  p a i r  o f  curves i n  f i gu re  7 repmsented 

by s o l i d  l i n e s  corresponds t o  damplng type (a) ,  t ha t  I s ,  s t ruc tura l  damplng 

only. The curves f o r  damping types (b),  (d), and ( c )  are represented by 

dashed, dash-dot, and dash-dash-dot 1 i nes, respect ively.  Clearly,  the dmpl ng 

type (c)  w i th  a lead shot a t  each o f  the locat ions x = 0.25L. 0.50L, and 0.75L 

i s  the most e f f e c t i v e  o f  the ones consldered i n  tern o f  i ts a b l l  l t y  t o  absorb 

energy and thereby reduce v lbrat ion.  I t  should k noted, however, t h a t  the 

c;.slylng types ( c )  and ( d l  r e s u l t  i n  nearly i den t i ca l  A-t envelopes up t o  

about t = 1.5 sec, a f t e r  which type (c )  shows a s l  f ght superior1 ty over type 

(d l ,  although they may be considered p r a c t i c a l l y  the same. F u r t h e m r e ,  as 

seen fm tab le  1, the r value f o r  type ( d l  i s  greater than tha t  for  type ( c )  

while the f value f o r  type ( c )  I s  smaller than t h a t  f o r  type ( d l .  Agaln, 

the spat ia l  e f f ec t s  my be a cause o f  such response. 



CCICPARISO)( OF THEORETICAL AND EXPERIEHTAL RESULTS 

U l t h  r e l a t i v e l y  small values o f  the  danplng r a t l o  c such as those f o r  

t e s t s  1 through 8 given i n  t ab le  1, a s ign l f l can t  v a r l a t l o n  o f  the  natura l  

dumped frequency o f  the member w l t h  c cannot be expected as evldent frcoa 

equatlon (16). Thus, I t  I s  concluded t h a t  the v a r l a t l o n  I n  fe values as seen 

fm tab le  1 I s  a t t r l b u t a b l e  primarily to the spat la l  e f f ec t s  mentioned 

ea r l  l e r .  To see h a  ell the frequency pred ic t ions  fm the theo re t i ca l  

analyses presented e a r l i e r  I n  t h l s  rwrrwrandua compare w i th  those observed 

experimentally, the  physical dimensions, the mater la l  properties, the end 

r e s t r a i n t  s t i f fness ,  and t h e  c values fm tab le  1 were fed l n t o  the c m u t e r  

p r o g r i m  developed spec ia l l y  f o r  t h i s  purpose. The fe values f twn the exact 

solut ion, the approxlmatz ana ly t l c  so lu t ion  ( f  nvolving eq. (28) 1, and the  

f l n f W d l f f e r e n c e  so lu t ion  f o r  a l l  the e igh t  t es t s  uere found to be 3.58, 3.63, 

and 3.52 Hz, respect ively.  The theore t lca l  analyses uere conducted on a Qeraber 

w l t h  no i n i t l  a1 imperfections. These theoretical fe values are  i n  very good 

agreenent u i t h  the average experimental fe value o f  3.42 Hz f o r  the e l g h t  

t es t s  i n  t ab le  1. Also, the experimental fe values are I n  the range 3.16 t o  

4.10 Hz and a l l  o f  the theoret ica l  predic t fons are w i t h l n  * Is  range. 

A canparison of normal lzed def lect ion- t ime curves fo r  a t lme i n t e t v a l  o f  

1 sec obtalned from each o f  the three analyses was a lso uaa& to those obtalned 

experimentally. During the tlme in te rva l  considered, the theore t lca l  predlc- 

t ions  were found to be i n  very good agreement u i t h  the  exper lmnta l  resu l ts .  

It should be recognized, harever, t h a t  w i t h c u t  Incorporat ing I n t o  the 

theore t lca l  analyses a l l  o f  the ex l s t f ng  spat ia l  e f f ec t s  mnt foned ea r l f e r ,  t he  

theoretically predlcted def lect ion- t ime curves w i l l  deviate fm the 

exper lmnta l  ones over longer i n t e w a l s  o f  time (such as o f  the order  o f  2 to 3 

zed. That t h i s  m u l d  be the case may be seen by canparlng the f values and 



t h e  A-t envelopes I n  f i g u r e  7 f o r  W s t s  7 and 8. Any of the three 

theoret lca l  analyses presentad f o r  a umber without spat ia l  e f fec ts  w i l l  

p red ic t  a greater decay u f t h  time o f  the def lect tons f o r  t e s t  8 due to i t s  

l a r g e r  c value o f  0.0354 caepared to t h a t  f o r  t e s t  7 w i th  a c value o f  

0.0296. The A-t curves f o r  these bso tests, i n  f l gu re  7, show t h a t  beyond 

t = 1.5 sec appraxlreately, the resu l t s  are on the contrary. For a m r e  

accurate theoret lca l  p red lc i ton  o f  the overa l l  d e f l e c t l o ~ t l ~  response o f  the 

atember, therefore, a t h ~ d l m e n s l o n a l  analysl s  should be formu1 ated. 

S W Y  AND COWCLUSIOWS 

The following i s  a b r i e f  s m r y  and sane conclusions based on the outcase 

o f  the research reported herein: 

1. Expl i c i  t f o m l  as f o r  p r e d l c t i  ng the e l a s t i c  buck1 ing  load and the  

natural frequency o f  c o l m s  u i t h  p a r t i a l  ro ta t iona l  end r e s t r a l n t s  are 

developed. The buckl ing load f o m l a  gives resu l t s  nearly identical to those 

f r an  the exact, and the  f i n l t e  e l a n t  techniques. The natura l  frequency 

f o m l a  also gives resu l t s  nearly l den t l ca l  t o  those fm the exact analysls. 

2. The natural frequency predlct lons fm the f o r w l a  developed, the exsct  

analysls, and the f i n i t e d i f f e r e n c e  formulat ion presented are a l l  i n  good 

agreerwnt with those observed experimentally despite the presence o f  s i g n i f i -  

cant  ax la l  m h e r  end res t ra in ts  and the attendant spat ia l  e f f e c t s  I n  the 

raentber response. 

3. The member d e f l e c t l o ~ t i a r e  response, uith a zero ax la l  load, from the 

theoret ica l  analyses i s  i n  very good agreement uith t h a t  observed exper im*  

t a l l y  f o r  about four  cycles o f  vibration beyond which saw devlat lon I s  

expected due t o  the spat ia l  and ax la l  end r e s t r a i n t  e f fec ts  not  Included i n  the  

analyses. 

4. The three lead shot conf igurat ions provided considerably greater daarplng 

than the slngl  e lead shot damper. 



APPENDIX A 

n m  IN THE MATRIX OF EQUATIOW (21) 
a 

I n  t h l s  appendix, the 16 t e r n  deflnlng the e a t t l x  o f  equation (21) are 

given as f o l l w s :  

a11 = 9 3  = 

= ~ 1 4  slnh &L + K& cork @L 



APPENDIX B 

TERNS OF UATRIX [rl 

As an e x a q l e ,  the varlous t e r n  o f  t h e  m a t r i x  [rl used i n  equatlon (39) 

a r e  def lned I n  t h i s  appendix f o r  M = 6. The various tern a r e  as  f o l l a r s :  

The t e r n  qj rnd b4 a r e  def ined by equations (42) and (431, respect ive ly .  



DERIVATIOY OF WI ,l UPRESSIOY 

The w181 e g n s s l o n  glven by equa t lm  (45) I s  derlved I n  t h l s  rppendlx. 

Y l  th: 
3 

suppose t h a t  equation (1) a l so  holds on the I n l t l r l  Ilm, t h a t  Is ,  

If ((xi) I n  w a t l o n  (6) ex ls t r ,  tha: 

I n which the i n l t l a l  cond l t lon  ( 7 )  I s  alrea* used. l h l ~  the cmtrrl d i f f e r  

ence expwsslons f o r  the second and fourth order ordinary d e r i v r t l v e r  o f  , . 

@(xi) I n  equation (C3) r e w l t s  In: 
3 



which takes the form of equation (45) if c o m W  by using equrtiorts (46) - 
.LC through (48). 
'-. ;< 
c: 
C, 

' I  



EQUTIQY FOR W I N 6  RATIO 

The logar i t tmic  decrement method (see ref .  6) ms used t o  calculate the 

daqiq r a t l o  c defined as: 

i n  which C i s  thp dap ing  coe f f i c ien t  and Cc i s  the c r i t i c a l  w i n g  factor 

given by: 

The dimping r a t i o  was calculated using the fo l l a r ing  equation: 

i n  which 6 i s  given by: 

uhere xl and p are the successive -1 itudes o f  v ibra t ion as defined i n  

reference 6. Each r: value was obta4ned by W i n g  an average o f  f i v e  6 

values fm each def lect ioet inre plot .  
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TABLE 1 .- S L M A R Y  OF EXPERIHUTAL RESULTS 

C 

0.0166 

.CUM9 

.0183 

.(XI34 

.0173 

.ON3 

.Om6 

.0354 

J 

e 
(Hz) 

3.43 

4.10 

3.16 

3.51 

3.23 

3.45 

3.20 
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FIGURE 1 Partially Restrained Member 
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FIGUFE 2 Dimensionless Interactf on Curves 
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2 ft. 

FIGURE 3 Schematic o f  Test Specimen and End Fixture 
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FIGURE 4 Schematic of Apparatus for Determining Restraint Stiffness 



FIGURE 5 Test Specimen with Idternal Dampers 
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FIGURE 6 Various Imperfectton Posit lons a t  llember Midspan 



FIGURE 7 tiember Dynamic Response Envelopes with Various I n t e r n a l  Oampers 
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