9,589 research outputs found

    The calibratrion of dopplergrams and magnetograms at BBSO

    Get PDF
    The calibration procedure for the Big Bear Solar Observatory (BBSO) videomagnetograph in which the radial velocity of the sidereal rotation of the Sun is used as a calibrator is described. One of the key points of the procedure is to eliminate the effects of the Earth's motion relative to the Sun and the temperature instability of the birefringent filter by tuning the bandpass of the birefringent filter. The other is to make the light level of the direct image of the videomagnetograph the same both in Doppler and in Zeeman modes in order to reduce the errors introduced by imperfect linearity of the transfer curve of the camera tube. Some practical problems of calibration are discussed for further improvement

    Photometry of the SW Sex-type nova-like BH Lyncis in high state

    Full text link
    Aims: We present a photometric study of the deeply eclipsing SW Sex-type nova-like cataclysmic variable star BH Lyn Methods: Time-resolved V-band CCD photometry was obtained for seven nights between 1999 and 2004. Results: We determined 11 new eclipse timings of BH Lyn and derived a refined orbital ephemeris with an orbital period of 0.155875577(14) day. During the observations, BH Lyn was in high-state with V~15.5 mag. The star presents ~1.5 mag deep eclipses with mean full-width at half-flux of 0.0683(+/-0.0054)P_orb. The eclipse shape is highly variable, even changing form cycle to cycle. This is most likely due to accretion disc surface brightness distribution variations, most probably caused by strong flickering. Time-dependent accretion disc self-occultation or variations of the hot spot(s) intensity are also possible explanations. Negative superhumps with period of ~0.145 day are detected in two long runs in 2000. A possible connection between SW Sex and negative superhump phenomena through the presence of tilted accretion disc is discussed, and a way to observationally test this is suggested

    How the Foot Modulates its Mechanics During Uphill and Downhill Walking

    Get PDF
    The foot\u27s biomechanical role in walking on sloped surfaces is currently unclear. While previous biomechanics studies have examined the hip, knee, and ankle, the foot is oversimplified as a rigid-body segment. This oversimplification overshadows its complex structure and function. In this project, we use an innovative multi-segment foot model to explore how the foot adapts its mechanics to incline and decline walking. Preliminary results have revealed that the foot is capable of adapting its mechanical work profile to both incline and decline walking. Specifically, the foot can increase its positive work output (i.e., increased energy generation) during inclined walking to help propel the body upwards, and it increases its negative work output (i.e., increased energy dissipation) during declined walking to help slow the body down. These results are informative for understanding the role the foot plays during walking, and may help in the design of prosthetic, orthotic, or exoskeletal devices that are supposed to mimic the foot’s function

    Structure propagation for zero-shot learning

    Full text link
    The key of zero-shot learning (ZSL) is how to find the information transfer model for bridging the gap between images and semantic information (texts or attributes). Existing ZSL methods usually construct the compatibility function between images and class labels with the consideration of the relevance on the semantic classes (the manifold structure of semantic classes). However, the relationship of image classes (the manifold structure of image classes) is also very important for the compatibility model construction. It is difficult to capture the relationship among image classes due to unseen classes, so that the manifold structure of image classes often is ignored in ZSL. To complement each other between the manifold structure of image classes and that of semantic classes information, we propose structure propagation (SP) for improving the performance of ZSL for classification. SP can jointly consider the manifold structure of image classes and that of semantic classes for approximating to the intrinsic structure of object classes. Moreover, the SP can describe the constrain condition between the compatibility function and these manifold structures for balancing the influence of the structure propagation iteration. The SP solution provides not only unseen class labels but also the relationship of two manifold structures that encode the positive transfer in structure propagation. Experimental results demonstrate that SP can attain the promising results on the AwA, CUB, Dogs and SUN databases

    Test-Retest Reliability of the SWAY Balance Mobile Application

    Get PDF
    The SWAY Balance Mobile Application is an FDA-cleared balance testing system which uses the built-in tri-axial accelerometers of a mobile electronic device to objectively assess postural movement. The system was designed to provide a means of quantitative balance assessment in clinical and on-field environments. The purpose of this study was to determine the intrasession and intersession reliability, as well as the minimum difference to be considered real, of the SWAY Balance Mobile Application

    Ankle and midtarsal joint quasi-stiffness during walking with added mass

    Get PDF
    Examination of how the ankle and midtarsal joints modulate stiffness in response to increased force demand will aid understanding of overall limb function and inform the development of bio-inspired assistive and robotic devices. The purpose of this study is to identify how ankle and midtarsal joint quasi-stiffness are affected by added body mass during over-ground walking. Healthy participants walked barefoot over-ground at 1.25 m/s wearing a weighted vest with 0%, 15% and 30% additional body mass. The effect of added mass was investigated on ankle and midtarsal joint range of motion (ROM), peak moment and quasi-stiffness. Joint quasi-stiffness was broken into two phases, dorsiflexion (DF) and plantarflexion (PF), representing approximately linear regions of their moment-angle curve. Added mass significantly increased ankle joint quasi-stiffness in DF (p \u3c 0.001) and PF (p \u3c 0.001), as well as midtarsal joint quasi-stiffness in DF (p \u3c 0.006) and PF (p \u3c 0.001). Notably, the midtarsal joint quasi-stiffness during DF was ~2.5 times higher than that of the ankle joint. The increase in midtarsal quasi-stiffness when walking with added mass could not be explained by the windlass mechanism, as the ROM of the metatarsophalangeal joints was not correlated with midtarsal joint quasi-stiffness (r = −0.142, p = 0.540). The likely source for the quasi-stiffness modulation may be from active foot muscles, however, future research is needed to confirm which anatomical structures (passive or active) contribute to the overall joint quasi-stiffness across locomotor tasks
    • …
    corecore