41 research outputs found

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (≲\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (≳\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    Multiscale Self-Assembly of Silicon Quantum Dots into an Anisotropic Three-Dimensional Random Network

    Get PDF
    Multiscale self-assembly is ubiquitous in nature but its deliberate use to synthesize multifunctional three-dimensional materials remains rare, partly due to the notoriously difficult problem of controlling topology from atomic to macroscopic scales to obtain intended material properties. Here, we propose a simple, modular, noncolloidal methodology that is based on exploiting universality in stochastic growth dynamics and driving the growth process under far-from-equilibrium conditions toward a preplanned structure. As proof of principle, we demonstrate a confined-but-connected solid structure, comprising an anisotropic random network of silicon quantum-dots that hierarchically self-assembles from the atomic to the microscopic scales. First, quantum-dots form to subsequently interconnect without inflating their diameters to form a random network, and this network then grows in a preferential direction to form undulated and branching nanowire-like structures. This specific topology simultaneously achieves two scale-dependent features, which were previously thought to be mutually exclusive: good electrical conduction on the microscale and a bandgap tunable over a range of energies on the nanoscale. © 2016 American Chemical Society

    Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling.

    Get PDF
    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties 1-7 . Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting 8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons 17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures

    Perspective on terahertz spectroscopy of graphene

    No full text
    Graphene has been an intensely studied material, owing to its unique band structure and concomitant outstanding electronic properties. In the past decades, ultrafast terahertz (THz) spectroscopy has developed into a powerful tool to characterize ultrafast charge carrier dynamics in a wide range of materials and material structures. In this Perspective we review recent experimental work exploring the ultrafast electron dynamics in graphene in the THz spectral range, and present a simple thermodynamic picture describing the THz linear, nonlinear, and photo-induced conductivity of this remarkable material

    Accurate terahertz spectroscopy of supported thin films by precise substrate thickness correction

    No full text
    Krewer KL, Mics Z, Arabski J, et al. Accurate terahertz spectroscopy of supported thin films by precise substrate thickness correction. Optics Letters. 2018;43(3): 447
    corecore