73 research outputs found

    Comment on 'Model-dependence of Shapiro time delay and the "speed of gravity/speed of light" controversy'

    Get PDF
    In a recent paper published in Classical and Quantum Gravity, 2004, vol. 21, p. 3803 Carlip used a vector-tensor theory of gravity to calculate the Shapiro time delay by a moving gravitational lens. He claimed that the relativistic correction of the order of v/c beyond the static part of the Shapiro delay depends on the speed of light c and, hence, the Fomalont-Kopeikin experiment is not sensitive to the speed of gravity c_g. In this letter we analyze Carlip's calculation and demonstrate that it implies a gravitodynamic (non-metric) system of units based on the principle of the constancy of the speed of gravity but it is disconnected from the practical method of measurement of astronomical distances based on the principle of the constancy of the speed of light and the SI metric (electrodynamic) system of units. Re-adjustment of theoretically-admissible but practically unmeasurable Carlip's coordinates to the SI metric system of units used in JPL ephemeris, reveals that the velocity-dependent correction to the static part of the Shapiro time delay does depend on the speed of gravity c_g as shown by Kopeikin in Classical and Quantum Gravity, 2004, vol. 21, p. 1. This analysis elucidates the importance of employing the metric system of units for physically meaningful interpretation of gravitational experiments.Comment: 8 pages, no figures, accepted to Classical and Quantum Gravit

    Unparticle physics and neutrino phenomenology

    Full text link
    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.Comment: 20 pages, 5 figures. Minor changes, final versio

    Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis

    Full text link
    A new list of physical characteristics of 4261 astrometric radio sources, including all 717 ICRF-Ext.2 sources has been compiled. Comparison of our data of optical characteristics with the official International Earth Rotation and Reference Systems Service (IERS) list showed significant discrepancies for about half of 667 common sources. We also found that asymmetry in the radio sources distribution between hemispheres could cause significant correlation between the vector spherical harmonics, especially if the case of sparse distribution of the sources with high redshift. We identified radio sources having many-year observation history and lack redshift. This sources should be urgently observed at large optical telescopes. The list of optical characteristics created in this paper is recommended for use as a supplement material for the next International Celestial Reference Frame (ICRF) realization. It can be also effectively used for cosmological studies and planning of observing programs both in radio and optics.Comment: 9 page

    The influence of Galactic aberration on precession parameters determined from VLBI observations

    Full text link
    The influence of proper motions of sources due to Galactic aberration on precession models based on VLBI data is determined. Comparisons of the linear trends in the coordinates of the celestial pole obtained with and without taking into account Galactic aberration indicate that this effect can reach 20 μ\muas per century, which is important for modern precession models. It is also shown that correcting for Galactic aberration influences the derived parameters of low-frequency nutation terms. It is therefore necessary to correct for Galactic aberration in the reduction of modern astrometric observations

    A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit

    Full text link
    We analytically work out several effects which a violation of the Strong Equivalence Principle (SEP) induces on the orbital motion of a binary system constituted of self-gravitating bodies immersed in a constant and uniform external field. We do not restrict to the small eccentricity limit. Moreover, we do not select any specific spatial orientation of the external polarizing field. We explicitly calculate the SEP-induced mean rates of change of all the osculating Keplerian orbital elements of the binary, the perturbation of the projection of the binary orbit onto the line-of-sight, the shift of the radial velocity, and the range and range-rate signatures and as well. We find that the ratio of the SEP precessions of the node and the inclination of the binary depends only on and the pericenter of the binary itself, being independent on both the magnitude and the orientation of the polarizing field, and on the semimajor axis, the eccentricity and the node of the binary. Our results, which do not depend on any particular SEP-violating theoretical scheme, can be applied to quite general astronomical and astrophysical scenarios. They can be used to better interpret present and future SEP experiments, especially when several theoretical SEP mechanisms may be involved, and to suitably design new dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in Classical and Quantum Gravity (CQG

    The first result of the neutrino magnetic moment measurement in the GEMMA experiment

    Full text link
    The first result of the neutrino magnetic moment measurement at the Kalininskaya Nuclear Power Plant (KNPP) with the GEMMA spectrometer is presented. An antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed 13.9 m away from the 3 GW reactor core is used in the spectrometer. The antineutrino flux is 2.73×1013νe/cm2/s2.73\times 10^{13} \nu_e / cm^2 / s. The differential method is used to extract the ν\nu-e electromagnetic scattering events. The scattered electron spectra taken in 6200 and 2064 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment μν<5.8×1011\mu_\nu < 5.8\times 10^{-11} Bohr magnetons at 90{%} CL is derived from the data processing.Comment: 9 pages, 10 figures, 2 table

    PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities

    Get PDF
    54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe

    Limits on the neutrino magnetic moment from the MUNU experiment

    Get PDF
    The MUNU experiment was carried out at the Bugey nuclear power reactor. The aim was the study of electron antineutrino-electron elastic scattering at low energy. The recoil electrons were recorded in a gas time projection chamber, immersed in a tank filled with liquid scintillator serving as veto detector, suppressing in particular Compton electrons. The measured electron recoil spectrum is presented. Upper limits on the neutrino magnetic moment were derived and are discussed.Comment: 9 pages, 7 figures Added reference: p.3, 1st col., TEXONO Added sentence: p.4, 1st col., electron attachement Modified sentence: p.5, 1st col., readout sequence Added sentence: p.5, 1st col., fast rise time cu

    Production of Electron Neutrinos at Nuclear Power Reactors and the Prospects for Neutrino Physics

    Full text link
    High flux of electron neutrinos(\nue) is produced at nuclear power reactors through the decays of nuclei activated by neutron capture. Realistic simulation studies on the neutron transport and capture at the reactor core were performed. The production of \chr51 and \fe55 give rise to mono-energetic \nue's at Q-values of 753 keV and 231 keV and fluxes of 8.3×1048.3 \times 10^{-4} and 3.0×1043.0 \times 10^{-4} \nue/fission, respectively. Using data from a germanium detector at the Kuo-Sheng Power Plant, we derived direct limits on the \nue magnetic moment and the radiative lifetime of \mu_{\nu} < 1.3 \times 10^{-8} ~ \mub and τν/mν>0.11s/eV\rm{\tau_{\nu} / m_{\nu} > 0.11 s / eV} at 90% confidence level (CL), respectively. Indirect bounds on τν/mν3\rm{\tau_{\nu} / m_{\nu}^3} were also inferred. The \nue-flux can be enhanced by loading selected isotopes to the reactor core, and the potential applications and achievable statistical accuracies were examined. These include accurate cross-section measurements, studies of mixing angle θ13\theta_{13} and monitoring of plutonium production.Comment: 5 pages, 3 figures, 7 table

    Determination of Redshifts for Selected IVS Sources. I

    Full text link
    From observations with the 6-m BTA telescope at SAO RAS, we have determined spectroscopic redshifts of seven optical objects whose coordinates coincide with those of radio sources from the list of IVS (International VLBI Service for Geodesy and Astrometry). When compared to radio data, the obtained spectra and redshifts provide evidence for reliable identification of four observed objects; the other three require further study. The distances to the sources derived from our measurements will make it possible to refine the current estimates for parameters of cosmological models based on proper motions of these objects, which are determined from geodetic VLBI observations.Comment: 8 pp., submitted to Astrophysic
    corecore