78 research outputs found

    Analyzing power measurements in high‐P2∥ p‐p elastic scattering

    Full text link
    The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87401/2/1123_1.pd

    A review on development and application of plant-based bioflocculants and grafted bioflocculants

    Get PDF
    Flocculation is extensively employed for clarification through sedimentation. Application of eco-friendly plant-based bioflocculants in wastewater treatment has attracted significant attention lately with high removal capability in terms of solids, turbidity, color, and dye. However, moderate flocculating property and short shelf life restrict their development. To enhance the flocculating ability, natural polysaccharides derived from plants are chemically modified by inclusion of synthetic, nonbiodegradable monomers (e.g., acrylamide) onto their backbone to produce grafted bioflocculants. This review is aimed to provide an overview of the development and flocculating efficiencies of plant-based bioflocculants and grafted bioflocculants for the first time. Furthermore, the processing methods, flocculation mechanism, and the current challenges are discussed. All the reported studies about plant-derived bioflocculants are conducted under lab-scale conditions in wastewater treatment. Hence, the possibility to apply natural bioflocculants in food and beverage, mineral, paper and pulp, and oleo-chemical and biodiesel industries is discussed and evaluated

    Light acclimation of leaf gas exchange in two Tunisian cork oak populations from contrasting environmental conditions

    No full text
    Due to diverse environmental conditions, Mediterranean plant populations are exposed to a range of selective pressures that may lead to phenotypic plasticity and local adaptation. We examined the effect of light acclimation on photosynthetic capacity in two Quercus suber (L.) populations that are native to different ecological conditions. Low-light adapted seedlings from both populations were exposed to three light treatments: full sunlight (HL), medium light (ML, 43% sunlight) and low light (LL, 15% sunlight) for one month. Photosynthetic performance was monitored by measuring leaf gas exchange and chlorophyll fluorescence parameters. The light environment influences light-saturated carbon assimilation (Amax) in the leaves of the population inhabiting the hot and dry region (from Gaafour). In contrast, there was no significant difference in Amax between leaves grown in high light and low light from Feija (the population native to a cold and humid climate), which suggests an inability of the Feija population to adjust its photosynthesis to respond to higher irradiance. The inability of the Feija population to adjust its photosynthesis did not result from a light acclimation failure in terms of chlorophyll content and ratio compared with the Gaafour population. Instead, it seems to be the consequence of lower stomatal conductance in the Feija population at HL compared to Gaafour
    corecore