180,756 research outputs found

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities

    Magnesium and magnesium alloys as degradable metallic biomaterials

    Get PDF
    Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium has been considered as it is essential to bodies and has a high biodegradation potential. For magnesium and its alloys to be used as biodegradable implant materials, their degradation rates should be consistent with the rate of healing of the affected tissue, and the release of the degradation products should be within the body's acceptable absorption levels. Conventional magnesium degrades rapidly, which is undesirable. In this study, biodegradation behaviours of high purity magnesium and commercial purity magnesium alloy AZ31 in both static and dynamic Hank's solution have been systematically investigated. The results show that magnesium purification and selective alloying are effective approaches to reduce the degradation rate of magnesium. In the static condition, the corrosion products accumulate on the materials surface as a protective layer, which results in a lower degradation rate than the dynamic condition. Anodised coating can significantly further reduce the degradation rate of magnesium. This study indicates that magnesium can be used as degradable implant materials as long as the degradation is controlled at a low rate. Magnesium purification, selective alloying and anodised coating are three effective approaches to reduce the rate of degradation

    A comparative analysis of the value of information in a continuous time market model with partial information: the cases of log-utility and CRRA

    Get PDF
    We study the question what value an agent in a generalized Black-Scholes model with partial information attributes to the complementary information. To do this, we study the utility maximization problems from terminal wealth for the two cases partial information and full information. We assume that the drift term of the risky asset is a dynamic process of general linear type and that the two levels of observation correspond to whether this drift term is observable or not. Applying methods from stochastic filtering theory we derive an analytical tractable formula for the value of information in the case of logarithmic utility. For the case of constant relative risk aversion (CRRA) we derive a semianalytical formula, which uses as an input the numerical solution of a system of ODEs. For both cases we present a comparative analysis

    Channel Parameters Estimation Algorithm Based on The Characteristic Function under Impulse Noise Environment

    Get PDF
    Under communication environments, such as wireless sensor networks, the noise observed usually exhibits impulsive as well as Gaussian characteristics. In the initialization of channel iterative decoder, such as low density parity check codes, it is required in advance to estimate the channel parameters to obtain the prior information from the received signals. In this paper, a blind channel parameters estimator under impulsive noise environment is proposed, which is based on the empirical characteristic function in MPSK/MQAM higher-order modulation system. Simulation results show that for various MPSK/MQAM modulations, the estimator can obtain a more accurate unbiased estimation even though we do not know which kind of higher-order modulation is used

    Quantum random walks without walking

    Full text link
    Quantum random walks have received much interest due to their non-intuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a BEC trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.Comment: 12 manuscript pages, 3 figure
    corecore