162 research outputs found
Predictive control of systems with fast dynamics using computational reduction based on feedback control information
Predictive control is a method, which is suitable for control of linear discrete dynamical systems. However, control of systems with fast dynamics could be problematic using predictive control. The calculation of a predictivecontrol algorithm can exceed the sampling period. This situation occurs in case with higher prediction horizons and many constraints on variables in the predictive control. In this contribution, an improving of the classical approach is presented. The reduction of the computational time is performed using an analysis of steady states in the control. The presented approach is based on utilization of information from the feedback control. Then this information is applied in the control algorithm. Finally, the classical method is compared to the presented modification using the time analyses. © Springer International Publishing Switzerland 2015
Універсітэт. - № 11 (2114)
PERMON makes use of theoretical results in quadratic programming algorithms and domain decomposition methods. It is built on top of the PETSc framework for numerical computations. This paper describes its fundamental packages and shows their applications. We focus here on contact problems of mechanics decomposed by means of a FETI-type non-overlapping domain decomposition method. These problems lead to inequality constrained quadratic programming problems that can be solved by our PermonQP package.11510
Efficient numerical methods for the large‐scale, parallel solution of elastoplastic contact problems
A three-scale domain decomposition method for the 3D analysis of debonding in laminates
The prediction of the quasi-static response of industrial laminate structures
requires to use fine descriptions of the material, especially when debonding is
involved. Even when modeled at the mesoscale, the computation of these
structures results in very large numerical problems. In this paper, the exact
mesoscale solution is sought using parallel iterative solvers. The LaTIn-based
mixed domain decomposition method makes it very easy to handle the complex
description of the structure; moreover the provided multiscale features enable
us to deal with numerical difficulties at their natural scale; we present the
various enhancements we developed to ensure the scalability of the method. An
extension of the method designed to handle instabilities is also presented
Body size and intracranial volume interact with the structure of the central nervous system: A multi-center in vivo neuroimaging study
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e., height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1 ± 6.6 years old, 125 females). We show that body height correlates with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44 ≤ r ≤ 0.62). Intracranial volume (ICV) correlates with body height (r = 0.46) and the brain volumes and CSA-WM (0.37 ≤ r ≤ 0.77). In comparison, age correlates with cortical GM volume, precentral GM volume, and cortical thickness (-0.21 ≥ r ≥ -0.27). Body weight correlates with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20 ≥ r ≥ -0.23). Body weight further correlates with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r = -0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlates with brain volumes (0.39 ≤ r ≤ 0.64), and with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22 ≥ r ≥ -0.25). Linear mixture of age, sex, or sex and age, explained 2 ± 2%, 24 ± 10%, or 26 ± 10%, of data variance in brain volumetry and SC CSA. The amount of explained variance increased to 33 ± 11%, 41 ± 17%, or 46 ± 17%, when body height, ICV, or body height and ICV were added into the mixture model. In females, the explained variances halved suggesting another unidentified biological factor(s) determining females’ central nervous system (CNS) morphology. In conclusion, body size and ICV are significant biological variables. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure; and body size and ICV should be considered as covariates in statistical analyses. Normalization of different brain regions with ICV diminishes their correlations with body size, but simultaneously amplifies ICV-related variance (r = 0.72 ± 0.07) and suppresses volume variance of the different brain regions (r = 0.12 ± 0.19) in the normalized measurements
Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord
Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure
Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities
- …
