5,370 research outputs found
Null vectors of the algebra
Using the fusion principle of Bauer et al. we give explicit expressions for
some null vectors in the highest weight representations of the \bc algebra in
two different forms. These null vectors are the generalization of the Virasoro
ones described by Benoit and Saint-Aubin and analogues of the ones
constructed by Bowcock and Watts. We find connection between quantum Toda
models and the fusion method.Comment: 8 pages, LaTeX, ITP Budapest 50
Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study
We study a calcium aluminosilicate glass of composition
(SiO)-(AlO)-(CaO) by means of
molecular-dynamics (MD) simulations, using a potential made of two-body and
three-body interactions. In order to prepare small samples that can
subsequently be studied by first-principles, the finite size effects on the
liquid dynamics and on the glass structural properties are investigated. We
find that finite size effects affect the Si-O-Si and Si-O-Al angular
distributions, the first peaks of the Si-O, Al-O and Ca-O pair correlation
functions, the Ca coordination and the oxygen atoms environment in the smallest
system (100 atoms). We give evidence that these finite size effects can be
directly attributed to the use of three-body interactions.Comment: 36 pages, 14 figures. Journal of Chem. Phys., in pres
Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt
We present results of single crystal neutron diffraction experiments on the
rare-earth, half-Heusler antiferromagnet (AFM) NdBiPt. This compound exhibits
an AFM phase transition at ~K with an ordered moment of
~ per Nd atom. The magnetic moments are aligned along
the -direction, arranged in a type-I AFM structure with ferromagnetic
planes, alternating antiferromagnetically along a propagation vector of
. The BiPt (= Ce-Lu) family of materials has been proposed as
candidates of a new family of antiferromagnetic topological insulators (AFTI)
with magnetic space group that corresponds to a type-II AFM structure where
ferromagnetic sheets are stacked along the space diagonal. The resolved
structure makes it unlikely, that NdBiPt qualifies as an AFTI.Comment: As resubmitted to PRB, corrected typos and changed symbols in Fig.
Incommensurate magnetic structure of CeRhIn5
The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is
determined using neutron diffraction. We find a magnetic wave vector
q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A
staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion,
spirals transversely along the c axis. The nearest neighbor moments on the
tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This
affects the value of staggered moment. The correct staggered moment is
0.374(5) Bohr magneton at 1.4
Rubber Impact on 3D Textile Composites
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools
Magnetic Structure of Heavy Fermion Ce2RhIn8
Magnetic structure of the heavy fermion antiferromagnet Ce2RhIn8 is
determined using neutron diffraction.Comment: 4 pages, 3 figures, 1 tabl
Alien Registration- Dubois, Benoit Z. (Sanford, York County)
https://digitalmaine.com/alien_docs/2684/thumbnail.jp
Scaling properties of driven interfaces in disordered media
We perform a systematic study of several models that have been proposed for
the purpose of understanding the motion of driven interfaces in disordered
media. We identify two distinct universality classes: (i) One of these,
referred to as directed percolation depinning (DPD), can be described by a
Langevin equation similar to the Kardar-Parisi-Zhang equation, but with
quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson
(QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson
equation but with quenched disorder. We find that for the DPD universality
class the coefficient of the nonlinear term diverges at the depinning
transition, while for the QEW universality class either or
as the depinning transition is approached. The identification
of the two universality classes allows us to better understand many of the
results previously obtained experimentally and numerically. However, we find
that some results cannot be understood in terms of the exponents obtained for
the two universality classes {\it at\/} the depinning transition. In order to
understand these remaining disagreements, we investigate the scaling properties
of models in each of the two universality classes {\it above\/} the depinning
transition. For the DPD universality class, we find for the roughness exponent
for the pinned phase, and
for the moving phase. For the growth exponent, we find for the pinned phase, and for the moving phase.
Furthermore, we find an anomalous scaling of the prefactor of the width on the
driving force. A new exponent , characterizing the
scaling of this prefactor, is shown to relate the values of the roughnessComment: Latex manuscript, Revtex 3.0, 15 pages, and 15 figures also available
via anonymous ftp from ftp://jhilad.bu.edu/pub/abms/ (128.197.42.52
Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex
Strategies to enhance the capacity of grafted stem/progenitors cells to generate multipotential, proliferative and migrating pools of cells in the postnatal brain could be crucial for structural repair after brain damage. We investigated whether the over-expression of basic fibroblast growth factor 2 (FGF-2) in neural progenitor cells (NPCs) could provide a robust source of migrating NPCs for tissue repair in the rat cerebral cortex. Using live imaging we provide direct evidence that FGF-2 over-expression significantly enhances the migratory capacity of grafted NPCs in complex 3D structures, such as cortical slices. Furthermore, we show that the migratory as well as proliferative properties of FGF-2 over-expressing NPCs are maintained after in vivo transplantation. Importantly, after transplantation into a neonatal ischaemic cortex, FGF-2 over-expressing NPCs efficiently invade the injured cortex and generate an increased pool of immature neurons available for brain repair. Differentiation of progenitor cells into immature neurons was correlated with a gradual down-regulation of the FGF-2 transgene. These results reveal an important role for FGF-2 in regulating NPCs functions when interacting with the host tissue and offer a potential strategy to generate a robust source of migrating and immature progenitors for repairing a neonatal ischaemic corte
Relaxation processes in harmonic glasses?
A relaxation process, with the associated phenomenology of sound attenuation
and sound velocity dispersion, is found in a simulated harmonic Lennard-Jones
glass. We propose to identify this process with the so called microscopic (or
instantaneous) relaxation process observed in real glasses and supercooled
liquids. A model based on the memory function approach accounts for the
observation, and allows to relate to each others: 1) the characteristic time
and strength of this process, 2) the low frequency limit of the dynamic
structure factor of the glass, and 3) the high frequency sound attenuation
coefficient, with its observed quadratic dependence on the momentum transfer.Comment: 11 pages, 3 figure
- …
