17 research outputs found

    Point-of-care diagnosis of endometrial cancer using the surgical intelligent knife (iknife)-a prospective pilot study of diagnostic accuracy

    Get PDF
    Introduction: Delays in the diagnosis and treatment of endometrial cancer negatively impact patient survival. The aim of this study was to establish whether rapid evaporative ionisation mass spectrometry using the iKnife can accurately distinguish between normal and malignant endometrial biopsy tissue samples in real time, enabling point-of-care (POC) diagnoses. Methods: Pipelle biopsy samples were obtained from consecutive women needing biopsies for clinical reasons. A Waters G2-XS Xevo Q-Tof mass spectrometer was used in conjunction with a modified handheld diathermy (collectively called the ‘iKnife’). Each tissue sample was processed with diathermy, and the resultant surgical aerosol containing ionic lipid species was then analysed, producing spectra. Principal component analyses and linear discriminant analyses were performed to determine variance in spectral signatures. Leave-one-patient-out cross-validation was used to test the diagnostic accuracy. Results: One hundred and fifty patients provided Pipelle biopsy samples (85 normal, 59 malignant, 4 hyperplasia and 2 insufficient), yielding 453 spectra. The iKnife differentiated between normal and malignant endometrial tissues on the basis of differential phospholipid spectra. Cross-validation revealed a diagnostic accuracy of 89% with sensitivity, specificity, positive predictive value and negative predictive value of 85%, 93%, 94% and 85%, respectively. Conclusions: This study is the first to use the iKnife to identify cancer in endometrial Pipelle biopsy samples. These results are highly encouraging and suggest that the iKnife could be used in the clinic to provide a POC diagnosis

    Effect of electrode geometry on the classification performance of Rapid Evaporative Ionization Mass Spectrometric (REIMS) bacterial identification

    No full text
    The recently developed automated, high-throughput monopolar REIMS platform is suited for the identification of clinically important microorganisms. Although already comparable to the previously reported bipolar forceps method, optimization of the geometry of monopolar electrodes, at the heart of the system, holds the most scope for further improvements to be made. For this, sharp tip and round shaped electrodes were optimized to maximize species-level classification accuracy. Following optimization of the distance between the sample contact point and tube inlet with the sharp tip electrodes, the overall cross-validation accuracy improved from 77% to 93% in negative and from 33% to 63% in positive ion detection modes, compared with the original 4 mm distance electrode. As an alternative geometry, round tube shaped electrodes were developed. Geometry optimization of these included hole size, number, and position, which were also required to prevent plate pick-up due to vacuum formation. Additional features, namely a metal “X”-shaped insert and a pin in the middle were included to increase the contact surface with a microbial biomass to maximize aerosol production. Following optimization, cross-validation scores showed improvement in classification accuracy from 77% to 93% in negative and from 33% to 91% in positive ion detection modes. Supervised models were also built, and after the leave 20% out cross-validation, the overall classification accuracy was 98.5% in negative and 99% in positive ion detection modes. This suggests that the new generation of monopolar REIMS electrodes could provide substantially improved species level identification accuracies in both polarity detection modes

    Informe de personal de apoyo: Córdoba, María Alejandra (2011-2012)

    No full text
    Proyectos de investigación en los cuales colabora: a) “Estrategias de intervención en el ciclo biológico de los parásitos intestinales” (FASE II) b) “Agentes bioterapéuticos en la prevención y tratamiento de la infección por Cryptosporidium spp.&rdquo
    corecore