90 research outputs found

    Hydrogen storage and distribution systems

    Get PDF
    Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or batch wise by ships, trucks, railway or airplanes. All batch transportation requires a storage system but also pipelines can be used as pressure storage system. Hydrogen exhibits the highest heating value per weight of all chemical fuels. Furthermore, hydrogen is regenerative and environment friendly. There are two reasons why hydrogen is not the major fuel of toady's energy consumption: First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water. This implies that we have to pay for this energy, which results in a difficult economic task, because since the industrialization we are used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is the low critical temperature of 33K, i.e. hydrogen is a gas at room temperature. For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage system is crucial. Hydrogen can be stored by six different methods and phenomena: high pressure gas cylinders (up to 800bar), liquid hydrogen in cryogenic tanks (at 21K), adsorbed hydrogen on materials with a large specific surface area (at T< 100K), absorbed on interstitial sites in a host metal (at ambient pressure and temperature), chemically bond in covalent and ionic compounds (at ambient pressure), oxidation of reactive metals e.g. Li, Na, Mg, Al, Zn with water. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Finally, the metal hydroxides can be thermally reduced to the metals in a solar furnac

    Evolution of metal catalyst during CVD synthesis of carbon nanotubes

    Get PDF
    La découverte révolutionnaire des nanotubes de carbone (CNT) en 1991 a provoqué une intensification des travaux de recherche dans le domaine de la science du carbone. Les propriétés fascinantes de ce matériau offrent une multitude d’applications potentielles, par exemple comme émetteur de champs, conducteur uni-dimensionnel, condensateur haute capacité (“supercap”), fibres de renforcement ou encore comme réservoir d’hydrogène. Malgré d’immenses progrès techniques, l’amélioration des méthodes de synthèse en vue d’une application commerciale est encore au centre des recherches. La technique de dépôt en phase vapeur (CVD) est un candidat prometteur. Dans cette technique, la nucléation et la croissance des CNTs sont induites par la décomposition de gaz carburés (CO, CO2, C2H2, etc.) sur un catalyseur métallique à des températures comprises entre 600°C et 1200°C. La CVD est largement utilisée pour la fabrication à grande échelle de CNTs et beaucoup de progrès ont été faits en ce qui concerne la quantité, les frais de synthèse et la pureté des produits. Toutefois, le mécanisme de croissance des nanotubes par CVD reste peu connu. La diffusion du carbone à travers le catalyseur métallique est souvent considérée comme l’étape déterminante lors de la croissance des CNTs. Les métaux les plus réactifs sont le fer, le cobalt et le nickel, mais leur effet catalytique est dépendant de plusieurs facteurs tels que la nature du précurseur, le substrat utilisé et les gaz de réaction. La nature chimique actuelle du catalyseur actif est très controversée; on ne sait pas par exemple s’il est présent sous forme de métal, de carbure ou en phase mélangée. Jusqu’à présent, très peu d’analyses insitu de l’évolution chimique et morphologique du catalyseur durant le processus CVD ont été faites. Le comportement de catalyseurs à base de nickel, cobalt, chrome ou molybdène a été analysé sous une atmosphère azote/acétylène ou azote/acétylène/ hydrogène à des températures de 600°C et de 750°C. Pour mieux comprendre les propriétés des phases métalliques pendant le processus de synthèse, un diffractomètre à rayons X équipé avec une table chauffante et un système de contrôle atmosphérique a été utilisé pour étudier in-situ l’évolution des revêtements de nitrate métallique. Les échantillons ont été ensuite trempés à différents stades de pyrolyse pour être finalement observés au MEB et MET. Les images au microscope ont montré que le nickel ainsi que le cobalt et le molybdène peuvent agir comme catalyseurs pour la nucléation et la croissance des CNTs, cepandant pas le chrome. La réduction de la taille des grains résultant d’une perte suffisante de volume solide pendant les réactions rédox dans le précurseur catalytique, ainsi que la transformation de ces précurseurs en une phase métallique sont les principales conditions nécessaires à la croissance de CNTs. Les stades de réaction observés pendant la réduction du précurseur ont été mis en relation avec la nucléation et la croissance des nanotubes. La diffusion de carbone à travers les particules métalliques, marquée par un agrandissement des paramètres cellulaires du métal et identifiée sur les diffractogrammes par un déplacement des pics, est observée à chaque fois que des nanotubes de carbone sont générés. Avec le nickel et le cobalt, aucune phase de carbure ne s’est formée. Avec le fer, la décomposition des phases métastables de carbure agit comme une seconde activation de la croissance des nanotubes alors que le molybdène va favoriser la formation de carbures qui vont stopper la croissance des CNTs après 20 minutes. Dans tous les cas, il a été démontré qu’un traitement préliminaire à l’hydrogène favorise la croissance des nanotubes.Die revolutionäre Entdeckung von Kohlenstoff- Nanoröhrchen (CNT) im Jahre 1991 liess die Forschungsarbeiten im Bereich der Kohlenstoffwissenschaft intensivieren. Die faszinierenden Eigenschaften dieses einzigartigen Materials ermöglichten eine Vielzahl von potenziellen Anwendungen wie zum Beispiel als Elektronen Feldemissionsquelle, eindimensionale Konduktoren, Superkapazitäten, Verstärkungsfaden oder Wasserstoffspeicher. Trotz der atemberaubenden technischen Fortschritte bemüht man sich immer noch um die Entwicklung einer Synthesemethode für die kommerzielle Anwendung. Ein vielversprechender Kandidat ist die Technik der chemischen Gasphasenabscheidung (CVD). Die Keimbildung und das Wachstum von CNTs werden induziert durch die Zersetzung von kohlenstoffhaltigen Gasen (CO, CO2, C2H2, usw.) über einem metallischen Katalysator bei Temperaturen zwischen 600°C und 1200°C. CVD ist eine weit verbreitete Technik für die Fabrikation von CNT in grossen Quantitäten und Fortschritte betreffend der Menge, der Synthesekosten und der Reinheit der Produkte, wurden erzielt. Doch das grosse Rätsel der CVD Methode bleibt der Wachstumsmechanismus. Der Hauptreaktionsschritt für das Wachstum von Nanoröhrchen scheint die Diffusion von Kohlenstoff durch den Metallkatalysator zu sein. Die reaktivsten Metalle sind Eisen, Kobalt und Nickel, doch deren katalytische Wirkung ist abhängig von der Art des Ausgangsmaterials, des benutzten Substrates und der Reaktionsgase. Sehr umstritten ist die aktuelle chemische Beschaffenheit des aktiven Katalysators, zum Beispiel ob er als Metall, Karbid oder als gemischte Phase vorliegt. Bis jetzt wurden nur sehr wenige in-situ Analysen der chemischen und morphologischen Evolution des Katalysators während des CVD Prozesses durchgeführt. Diese Doktorarbeit befasst sich mit der Evolution von nickel-, kobalt-, chrom- und molybdänbasierenden Katalysatoren unter Stickstoff/Acetylen und Stickstoff/Acetylen/Wasserstoff Atmosphäre bei 600°C und 750°C. Um die Eigenschaften von metallischen Phasen während des Syntheseablaufs aufzuklären, wurde ein Röntgendiffraktometer mit einem Heiztisch und einem Atmosphärenkontrollsystem ausgestattet, welches das in-situ Studium der Evolution von Metallnitrat-Filmen ermöglicht. Die Proben wurden dafür bei verschiedenen Pyrolysezeiten abgeschreckt und im REM und TEM untersucht. Die Mikroskopiebilder zeigen, dass Nickel sowie Kobalt und Molybdän unter typischen Nanoröhrchen Synthesebedingungen als Katalysatoren für CNTs Keimbildung und Wachstum agieren können, jedoch nicht Chrom. Korngrössenreduktion, resultierend aus dem ausreichenden Festkörpervolumenverlust während der Redox Reaktion im katalytischen Ausgangsmaterial, und die Transformation des Ausgangsmaterials zu einer metallischen Phase sind die Hauptvoraussetzungen für das CNT Wachstum. Die beobachteten Reaktionsabschnitte während der Reduktion des Ausgangsmaterials werden in Verbindung gebracht mit der Keimbildung und dem Wachstum von Nanoröhrchen. Kohlenstoffdiffusion durch die metallischen Partikel, angezeigt durch eine Vergrösserung der Zellparameter des Metalls und identifiziert in Diffraktogramme als Peak- Verschiebung, wurde beobachtet wann immer CNTs gebildet wurden. Im Nickel- und Kobaltsystem wurden keine Karbidphasen entdeckt. Doch im Vergleich zum Eisensystem, wo die Zerlegung von metastabilem Karbid als zweiter Schub von Nanoröhrchen Bildung dient, wird das CNT Wachstum im Molybdänsystem nach der Bildung von Karbiden nach 20 Minuten gestoppt. In jedem Fall begünstigt eine Vorbehandlung mit Wasserstoff die Nanoröhrchen Bildung.The revolutionary discovery of carbon nanotubes (CNT) in 1991 led to intense research activities in the domain of carbon science. The fascinating properties of these unique material has opened a great number of potential applications e.g. as electron field emitters, one-dimensional conductors, supercapacitors, reinforcing fibres or hydrogen storage. Despite these stunning technical progresses there is still much struggle in the development of a synthesis method suitable for commercial applications. A leading candidate is the chemical vapour deposition (CVD) technique. Nucleation and growth of CNTs are induced by the decomposition of carbon-containing gases (CO, CO2, C2H2, etc) over a metallic catalyst at temperatures between 600°C and 1200°. CVD is a widely used technique to generate CNTs in large quantities and much progress has been made from the point of view of the yield, the synthesis costs or the purity of the products. But the great conundrum of CVD process remains the growth mechanism. A key reaction step for nanotube growth seems to be diffusion of carbon through the metal catalyst and the most active metals are iron, cobalt and nickel but their catalytic action depends on the type of precursor, the type of substrate and of the reactive gases used. Highly controversial is the actual chemical nature of the active catalyst e.g. if it is present as metal, carbide or as mixed phase. So far few investigations of the chemical and morphological evolution of the catalyst during CVD process have been performed. This thesis focuses on the evolution of nickel-, cobalt-, chromium- and molybdenum-based catalysts under a nitrogen/acetylene and a nitrogen/acetylene/ hydrogen atmosphere at 600°C and 750°C. In order to elucidate the nature of the catalyst during synthesis runs an X-ray diffractometer equipped with a heating stage and an atmosphere controlling system was used to study in-situ the evolution of metal nitrate films. Samples quenched after different pyrolysis time were investigated by SEM and TEM. The microscopic images showed that nickel, cobalt and molybdenum can act under typical nanotube synthesis conditions as catalyst for CNT nucleation and growth, but not chromium. Grain size reduction resulting from a sufficient solid volume loss during redox reactions in the catalyst precursor and the transformation of these precursors to a metallic phase are the main requirements for nanotube growth. The reaction sequences observed during the reduction of the precursor are put in relation with the nucleation and growth of nanotubes. Diffusion of carbon through the metal particle, indicated by an increase of metal cell parameters identified in diffractograms as peak shifts, was observed whenever carbon nanotubes were generated. In the nickel and cobalt system no carbide phases were detected. In contrast to the iron system, where the break-down of metastable carbides act as a second boost of nanotube formation, the appearance of carbides in the molybdenum system after 20 minutes stops further carbon nanotube growth. In any case hydrogen pre-treatment promotes nanotube growth

    Storage of Renewable Energy by Reduction of CO2 with Hydrogen

    Get PDF
    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m3 which limits the energy density to about half of the energy density in fossil fuels. Introducing CO2 into the cycle and storing hydrogen by the reduction of CO2 to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO2 neutral) if CO2 is extracted from the atmosphere. Today's technology allows CO2 to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer–Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO2 from the atmosphere close to the thermodynamic limit and to reduce CO2 with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels

    Dehydriding and rehydriding reactions of LiBH₄

    Get PDF
    Structural differences in LiBH₄ before and after the melting reaction at approximately 550 K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH₄ begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH₄]-anion in LiBH₄ was found to be effective for the confirmation of the reversibility. In the present study, LiBH₄ was successively dehydrided (decomposed) into LiH and B under 1 MPa of hydrogen at 873 K, and then rehydrided (recombined) into LiBH₄ under 35 MPa of hydrogen at the same temperature (873 K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30 K, for LiBH₄ substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH₄ alone. This is similar to the tendency exhibited by LiNH₂

    First-principles study on the intermediate compounds of LiBH4_4

    Full text link
    We report the results of the first-principles calculation on the intermediate compounds of LiBH4_4. The stability of LiB3_3H8_8 and Li2_2Bn_nHn(n=512)_n (n=5-12) has been examined with the ultrasoft pseudopotential method based on the density functional theory. Theoretical prediction has suggested that monoclinic Li2_2B12_{12}H12_{12} is the most stable among the candidate materials. We propose the following hydriding/dehydriding process of LiBH4_4 via this intermediate compound : LiBH41/12_4 \leftrightarrow {1/12}Li2_{2}B12_{12}H12+5/6_{12} + {5/6} LiH +13/12+ {13/12}H2_2 \leftrightarrow LiH ++ B +3/2+ {3/2} H2_2. The hydrogen content and enthalpy of the first reaction are estimated to be 10 mass% and 56 kJ/mol H2_2, respectively, and those of the second reaction are 4 mass% and 125 kJ/mol H2_2. They are in good agreement with experimental results of the thermal desorption spectra of LiBH4_4. Our calculation has predicted that the bending modes for the Γ\Gamma-phonon frequencies of monoclinic Li2_2B12_{12}H12_{12} are lower than that of LiBH4_4, while stretching modes are higher. These results are very useful for the experimental search and identification of possible intermediate compounds.Comment: 7 pages, 5 figures, submitted to PR
    corecore