61 research outputs found

    Entwicklung eines transplantierbaren HautÀquivalentes auf Basis von Matriderm mit menschlichen Keratinozyten und Fibroblasten

    Get PDF
    Meeting Abstract Es wurde eine zellbasierte Wundauflage mit Keratinozyten und Fibroblasten auf Basis einer kommerziellen Wundauflage (Matriderm, Collagen/Elastin-Matrix) generiert, um damit großflĂ€chige Verbrennungswunden behandeln zu können. ZunĂ€chst wurde die Expansion der Keratinozyten optimiert und die Zeit fĂŒr die AnzĂŒchtung minimiert. Ausgangsmaterial waren 1–2 cm2 Spalthaut vom Patienten. Epidermis und Dermis wurden nach einer enzymatischen Behandlung mit Thermolysin voneinander getrennt. Aus den beiden Hautkompartimenten wurden durch Trypsin- und Kollagenase I-Behandlung Keratinozyten und Fibroblasten isoliert, welche in Kollagen I-beschichteten Zellkulturflaschen expandiert wurden. Nach 10 Tagen wurden die Fibroblasten auf 100 cm2 Matriderm aufgebracht. Nach einwöchiger submerser Kultivierung wurden die Keratinozyten ausgesĂ€t. Eine Woche spĂ€ter wurde die Matrix an die Luft-FlĂŒssigkeitsgrenze angehoben, um die epidermale Differenzierung einzuleiten. Nach 16 Tagen wurde das HautĂ€quivalent fixiert und immunhistologisch sowie elektronen-mikroskopisch begutachtet. Die Histologie zeigte eine regelgerechte Stratifizierung des epidermalen Anteils. Immunhistologisch ließ sich eine Basalmembran mit Collagen IV und Laminin 5 nachweisen. Proliferative Zellen, nachgewiesen mit KI-67 befanden sich lediglich in der basalen Region der Epidermis. Desmoglein, sowie die Differenzierungsmarker Involucrin und CK 10 wurden suprabasal nachgewiesen. Elektronenmikroskopisch waren die Basalmembran sowie die Zell-Zell-Verbindungen in Form von Desmosmen zu erkennen. SpĂ€te Differenzierungsmerkmale, wie granulĂ€re Strukturen und verdickte Zellmembranen, fanden sich im Str. granulosum und Str. corneum. Die Studie zeigt, dass man aus Matriderm eine zellbasierte Wundauflage herstellen kann, die verglichen mit dem Ausgangsmaterial um den Faktor 50–100 vergrĂ¶ĂŸert ist und deren Aufbau normaler Haut weitgehend entspricht

    Repurposing of the antibiotic nitroxoline for the treatment of mpox

    Get PDF
    The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side‐effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat‐resistant strain and increased the anti‐mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co‐transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity

    stairs and fire

    Get PDF

    Dimethylfumarate Inhibits Colorectal Carcinoma Cell Proliferation: Evidence for Cell Cycle Arrest, Apoptosis and Autophagy

    Get PDF
    Recent studies have proven that Dimethylfumarate (DMF) has a marked anti-proliferative impact on diverse cancer entities e.g., on malignant melanoma. To explore its anti-tumorigenic potential, we examined the effects of DMF on human colon carcinoma cell lines and the underlying mechanisms of action. Human colon cancer cell line HT-29 and human colorectal carcinoma cell line T84 were treated with or without DMF. Effects of DMF on proliferation, cell cycle progression, and apoptosis were analyzed mainly by Bromodeoxyuridine (BrdU)- and Lactatdehydrogenase (LDH)assays, caspase activation, flowcytometry, immunofluorescence, and immunoblotting. In addition, combinational treatments with radiation and chemotherapy were performed. DMF inhibits cell proliferation in both cell lines. It was shown that DMF induces a cell cycle arrest in G0/G1 phase, which is accompanied by upregulation of p21 and downregulation of cyclin D1 and Cyclin dependent kinase (CDK)4. Furthermore, upregulation of autophagy associated proteins suggests that autophagy is involved. In addition, the activation of apoptotic markers provides evidence that apoptosis is involved. Our results show that DMF supports the action of oxaliplatin in a synergetic manner and failed synergy with radiation. We demonstrated that DMF has distinct antitumorigenic, cell dependent effects on colon cancer cells by arresting cell cycle in G0/G1 phase as well as activating both the autophagic and apoptotic pathways and synergizes with chemotherapy

    Extrinsic or intrinsic apoptosis by curcumin and light : still a mystery

    No full text
    Curcumin—a rhizomal phytochemical from the plant Curcuma longa—is well known to inhibit cell proliferation and to induce apoptosis in a broad range of cell lines. In previous studies we showed that combining low curcumin concentrations and subsequent ultraviolet A radiation (UVA) or VIS irradiation induced anti-proliferative and pro-apoptotic effects. There is still debate whether curcumin induces apoptosis via the extrinsic or the intrinsic pathway. To address this question, we investigated in three epithelial cell lines (HaCaT, A431, A549) whether the death receptors CD95, tumor necrosis factor (TNF)-receptor I and II are involved in apoptosis induced by light and curcumin. Cells were incubated with 0.25–0.5 ”g/mL curcumin followed by irradiation with 1 J/cm2 UVA. This treatment was combined with inhibitors specific for distinct membrane-bound death receptors. After 24 h apoptosis induction was monitored by quantitative determination of cytoplasmic histone-associated-DNA-fragments. Validation of our test system showed that apoptosis induced by CH11 and TNF-α could be completely inhibited by their respective antagonists. Interestingly, apoptosis induced by curcumin/light treatment was reversed by none of the herein examined death receptor antagonists. These results indicate a mechanism of action independent from classical death receptors speaking for intrinsic activation of apoptosis. It could be speculated that a shift in cellular redox balance might prompt the pro-apoptotic processe

    Ligation of ÎČ4 integrins activates PKB/Akt and ERK1/2 by distinct pathways—relevance of the keratin filament

    Get PDF
    AbstractIn normal epithelial cells hemidesmosomes mediate stable adhesion to the underlying basement membrane. In carcinoma cells a functional and spatial dissociation of the hemidesmosomal complex is observed stimulating the hypothesis that the ÎČ4 integrin may trigger essential signalling cascades determining cell fate. In the present study we dissected the signalling pathways giving rise to PKB/Akt and ERK1/2 activation in response to ÎČ4 ligation by 3E1. It was found that the activation of PKB/Akt is sensitive towards alterations of the keratin filament as demonstrated by using KEB-7 cells that carry a keratin mutation typical for epidermolysis bullosa simplex. Similar results were achieved by chemically induced keratin aggregations. Of note, the signalling to ERK1/2 was not affected. ERK1/2 activation utilizes an EGF-R transactivation mechanism as shown by dominant-negative expression experiments and also by treatment with a specific inhibitor (AG1478). Downstream from the EGF-R the activation of ERK1/2 takes the prototypical signalling cascade via Shc, Ras and Raf-1 as demonstrated by dominant-negative expression experiments. Taken together our data define a new model of ÎČ4-dependent PKB/Akt and ERK1/2 activation demonstrating the keratin filament as a structure necessary in signal transmission

    Hypersensitivity reactions to non‐steroidal anti‐inflammatory drugs (NSAIDs) – a retrospective study

    No full text
    Background: The aim of this study was to verify the validity of clinical history and oral provocation challenges of patients with NSAID hypersensitivity and to identify safe alternatives. The COX‐2 inhibitor etoricoxib, in particular, was studied. Patients and methods: In all, 104 patients with confirmed diagnoses of NSAID hypersensitivity treated at the Department of Dermatology, Frankfurt University Hospital, Germany between 2004 and 2012 were retrospectively studied. Results: The medical history and hypersensitivity symptoms during oral provocation testing (OPT) largely coincided and were mostly mild to moderate. Acetylsalicylic acid (ASA) was the most frequent trigger both anamnestically (27.9 %) and during OPT (47.8 %). Etoricoxib caused the fewest reactions during OPT (4.2 %). Acetaminophen led to reactions in only 6.7 % of the cases studied although it was named more often in clinical histories (14 %). Conclusions: OPT should be the aim whenever possible as most symptoms are mild to moderate. To distinguish between selective and cross‐hypersensitivity reactions, ASA should be part of the test protocol. Furthermore, the findings of this study indicate that etoricoxib and acetaminophen are safe treatment alternatives in case of NSAID hypersensitivity. However, these drugs should not be administered without prior OPT in an inpatient setting, as severe symptoms can occur

    Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models.

    No full text
    Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation
    • 

    corecore