29 research outputs found

    Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe–4S] protein

    Get PDF
    AbstractThe last enzyme (LytB) of the methylerythritol phosphate pathway for isoprenoid biosynthesis catalyzes the reduction of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into isopentenyl diphosphate and dimethylallyl diphosphate. This enzyme possesses a dioxygen-sensitive [4Fe–4S] cluster. This prosthetic group was characterized in the Escherichia coli enzyme by UV/visible and electron paramagnetic resonance spectroscopy after reconstitution of the purified protein. Enzymatic activity required the presence of a reducing system such as flavodoxin/flavodoxin reductase/reduced nicotinamide adenine dinucleotide phosphate or the photoreduced deazaflavin radical

    Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization

    No full text
    Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained

    Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization

    No full text
    Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained

    Estimation of spectrum parameters for Quantitative EPR in the derivative limit

    No full text
    International audienc

    Multifrequency High-Field EPR Study of Binuclear Mn(III)Mn(IV) Complexes

    No full text
    International audienceThe results from a multifrequency high-field EPR study of five di-μ-oxo bridged mixed-valence binuclear Mn(III)Mn(IV) complexes are reported. Spectra were obtained at 9, 95, and 285 GHz. The g anisotropy was unambiguously observable at 285 GHz. Hyperfine and g tensor values were estimated using spectral simulation procedures that cyclically and simultaneously fit the multifrequency data. In all five cases, the g tensors of the mixed-valence complexes were found to be rhombic. The g tensors were analyzed using the vector projection model. Most, but not all, of the g anisotropy originates from the Mn(III) center. The rhombic g tensors result from the low symmetry of the manganese centers. The size of the effective g anisotropy for a given complex was found to be a linear function of the average bond distance between the manganese and axial nitrogens. This relationship can be understood in terms of the influence of tetragonal distortion on the electronic levels of the Mn(III) center. The frequency-dependent line broadening observed in these mixed-valence complexes is explained in terms of the relationship between g anisotropy and structure

    Parameter Estimation for Quantitative EPR Spectroscopy

    No full text
    International audienc
    corecore