29 research outputs found

    Careful adjustment of Epo non-viral gene therapy for β-thalassemic anaemia treatment

    Get PDF
    BACKGROUND: In situ production of a secreted therapeutic protein is one of the major gene therapy applications. Nevertheless, the plasmatic secretion peak of transgenic protein may be deleterious in many gene therapy applications including Epo gene therapy. Epo gene transfer appears to be a promising alternative to recombinant Epo therapy for severe anaemia treatment despite polycythemia was reached in many previous studies. Therefore, an accurate level of transgene expression is required for Epo application safety. The aim of this study was to adapt posology and administration schedule of a chosen therapeutic gene to avoid this potentially toxic plasmatic peak and maintain treatment efficiency. The therapeutic potential of repeated muscular electrotransfer of light Epo-plasmid doses was evaluated for anaemia treatment in β-thalassemic mice. METHODS: Muscular electrotransfer of 1 μg, 1.5 μg, 2 μg 4 μg or 6 μg of Epo-plasmid was performed in β-thalassemic mice. Electrotransfer was repeated first after 3.5 or 5 weeks first as a initiating dose and then according to hematocrit evolution. RESULTS: Muscular electrotransfer of the 1.5 μg Epo-plasmid dose repeated first after 5 weeks and then every 3 months was sufficient to restore a subnormal hematrocrit in β-thalassemic mice for more than 9 months. CONCLUSION: This strategy led to efficient, long-lasting and non-toxic treatment of β-thalassemic mouse anaemia avoiding the deleterious initial hematocrit peak and maintaining a normal hematocrit with small fluctuation amplitude. This repeat delivery protocol of light doses of therapeutic gene could be applied to a wide variety of candidate genes as it leads to therapeutic effect reiterations and increases safety by allowing careful therapeutic adjustments

    Exquisite Sensitivity of TP53 Mutant and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide Regimen

    Get PDF
    BACKGROUND: In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. METHODS AND FINDINGS: In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m(2) epirubicin and 1,200 mg/m(2) cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status. CONCLUSIONS: This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin–cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features

    The Effects of Hemin and Double-Stranded RNA on α and β Globin Synthesis in Reticulocyte and Krebs II Ascites Cell-Free Systems and the Relationship of These Effects to an Initiation Factor Preparation

    No full text
    Protein synthesis in reticulocyte lysates ceases abruptly in the absence of added hemin or in the presence of double-stranded RNA. A similar effect of double-stranded RNA is observed in Krebs II ascites cell-free systems translating exogenous globin mRNA. The shut-off of protein synthesis is due to inhibition of initiation and can be prevented or reversed by addition of the initiation factor preparation M(3). Preparations of M(1), M(2), and dissociation factor are ineffective under these conditions. The effects of added hemin, M(3), and globin mRNA on the synthesis of α and β globin chains have been studied in the reticulocyte and ascites cell extracts. When the concentration of M(3) is rate limiting, the synthesis of β chains exceeds that of α chains. When the concentration of mRNA is rate limiting, synthesis of α and β chains is more nearly equal

    Etude des triple-hélices et de leur utilisation pour développer une nouvelle approche de ciblage de gène

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Protective effects of phosphodiesterase-4 (PDE-4) inhibition in the early phase of pulmonary arterial hypertension in transgenic sickle cell mice.

    No full text
    Pulmonary arterial hypertension (PAH) is one of the leading causes of morbidity and mortality in adult patients with sickle cell disease (SCD). Here, we developed a model to study the early stage of PAH in SCD. We exposed wild-type and transgenic sickle cell SAD (Hbb(s)/Hbb(s)) mice to hypoxia (8\% O2) for 7 days. Prolonged hypoxia in SAD mice only induced 1) increased neutrophil count in both bronchoalveoal lavage (BAL) and peripheral circulation; 2) increased BAL IL1beta, IL10, IL6, and TNF-alpha; and 3) up-regulation of the genes endothelin-1, cyclo-oxygenase-2, angiotensin-converting-enzyme, and IL-1beta, suggesting that amplified inflammatory response and activation of the endothelin-1 system may contribute to the early phase of PAH in SCD. Since phosphodiesterases (PDEs) are involved in pulmonary vascular tone regulation, we evaluated gene expression of phosphodiesterase-4 (PDE-4) isoforms and of PDE-1, -2, -3, -7, -8, which are the main cyclic-adenosine-monophosphate hydrolyzing enzymes. In SAD mouse lungs, prolonged hypoxia significantly increased PDE-4 and -1 gene expressions. The PDE-4 inhibitor, rolipram, prevented the hypoxia-induced PDE-4 and -1 gene up-regulation and interfered with the development of PAH, most likely through modulation of both vascular tone and inflammatory factors. This finding supports a possible therapeutic use of PDEs inhibitors in the earlier phases of PAH in SCD.-De Franceschi, L., Platt, O. S., Malpeli, G., Janin, A., Scarpa, A., Leboeuf, C., Beuzard, Y., Payen, E., Brugnara, C. Protective effects of PDE-4 inhibition in the early phase of pulmonary arterial hypertension in transgenic sickle cell mic
    corecore