148 research outputs found

    Automated Avalanche Deposit Mapping From VHR Optical Imagery

    Get PDF
    Using eCognition we developed an algorithm to automatically detect and map avalanche deposits in Very High Resolution (VHR) optical remote sensing imagery acquired from satellites and airplanes. The algorithm relies on a cluster-based object-oriented image interpretation approach which employs segmentation and classification methodologies to identify avalanche deposits. The algorithm is capable of detecting avalanche deposits of varying size, composition, and texture. A discrete analysis of one data set (airborne imagery collected near Davos, Switzerland) demonstrates the capability of the algorithm. By comparing the automated detection results to the manually mapped results for the same image, 33 of the 35 manually digitized slides were correctly identified by the automated method. The automated mapping approach characterized 201 667 m2, of the image as being representative of a fresh snow avalanche, roughly 8.5% of the image. Through a spatial intersection between the manually mapped avalanches and the automatically mapped avalanches, 184 432 m2, or 89%, of the automatically mapped regions are spatially linked to the manually mapped regions. The rate of false positive was less than 1% of the pixels in the image. The initial results of the algorithm are promising, future development and implementation is currently being evaluated. The ability to automatically identify the location and extent of avalanche deposits using VHR optical imagery can assist in the development of detailed regional maps of zones historically prone to avalanches. This in turn can help to validate issued avalanche warnings

    Automatisierte Erkennung und Kartierung von Lawinenablagerungen mit optischen Fernerkundungsdaten

    Full text link
    Lawinen bedrohen GebĂ€ude sowie Verkehrsinfrastruktur im Alpenraum. Sie fordern in der Schweiz mehr Todesopfer als jeder andere Typ von Naturkatastrophen. Deshalb sind rasch verfĂŒgbare und prĂ€zise Informationen ĂŒber die Lage und Reichweite von Lawinenereignissen wichtig fĂŒr die Lawinenwarnung und die Entscheidungsfindung bezĂŒglich der Sperrung von Strassen, Bergbahnen und Skipisten. FĂŒr die Evaluation der Gefahrenprognose, fĂŒr die Erstellung von Kataster und Gefahrenkarten sowie fĂŒr die Kalibrierung und Evaluation von Lawinenmodellen sind sie ebenfalls von grosser Bedeutung. Heute werden diese Informationen vorwiegend von Beobachtern vor Ort erhoben. Aufgrund der eingeschrĂ€nkten ZugĂ€nglichkeit hochalpiner Gebiete im Winter kann aber nur ein Bruchteil aller Lawinenereignisse erfasst werden. Insbesondere kleinere bis mittlere Lawinenereignisse in abgelegenen Gebieten werden nur sporadisch kartiert. Aber gerade dieser Lawinentyp fordert die meisten Todesopfer unter der steigenden Zahl von Wintersportlern, die sich abseits der markierten Pisten bewegen. Fernerkundungssensoren können auch ĂŒber schwer zugĂ€nglichem Gebiet grossflĂ€chig Daten erheben und sind deshalb ein potentielles Werkzeug, das zur Schliessung dieser InformationslĂŒcke beitragen kann. In dieser Arbeit wird systematisch untersucht, inwiefern Lawinenkegel mit rĂ€umlich hochauflösenden optischen Fernerkundungsdaten erkannt und kartiert werden können. Anhand von Feld-Spektroradiometermessungen von neun Lawinenkegeln wird analysiert, ob allgemeingĂŒltige, substantielle spektrale Unterschiede zwischen Lawinenkegel und der angrenzenden, ungestörten Schneedecke bestehen. Obwohl interessante Absorptionsfeatures im nahen Infrarotbereich des elektromagnetischen Spektrums identifiziert werden können, sind die Unterschiede kaum ausgeprĂ€gt genug, um sie mit flugzeug- oder satellitengestĂŒtzten Sensoren zu erfassen. Das direktionale Reflexionsverhalten der rauen OberflĂ€che eines Lawinenkegels verhĂ€lt sich kontrĂ€r zum Reflexionsverhalten der ungestörten Schneedecke. Anhand von Daten des Luftbildscanners ADS40, aufgenommen aus unterschiedlichen Blickwinkeln, kann gezeigt werden, dass dieser Unterschied im Reflexionsverhalten der zwei SchneeoberflĂ€chentypen mit grosser Wahrscheinlichkeit genutzt werden kann, um Lawinenkegel zu detektieren. Allerdings reicht der in dieser Untersuchung verfĂŒgbare Blickwinkelunterschied von 16° nicht aus, um Lawinenkegel allein auf Basis der direktionalen Unterschiede mit genĂŒgender Genauigkeit zu kartieren. Die Texturen von Lawinenkegeln und der ungestörten Schneedecke unterscheiden sich deutlich. Eine grobe Unterscheidung ist bereits von blossem Auge möglich. Die Statistik zweiter Ordnung, welche die rĂ€umliche Verteilung von IntensitĂ€tswerten berĂŒcksichtigt, kann Texturmerkmale in digitalen Bilddaten quantitativ erfassen. Dies ist die Voraussetzung fĂŒr eine automatisierte Erkennung spezifischer Texturen. Anhand von RC30 Luftbildern, aufgenommen wĂ€hrend des Lawinenwinters 1999, werden in der Literatur beschriebene Texturmasse auf ihre Eignung fĂŒr die Unterscheidung zwischen Lawinenkegel und ungestörter Schneedecke getestet. Dabei werden die massgebenden Parameter systematisch variiert, um die optimalen Einstellungen zu identifizieren. Das Texturmass Entropy erweist sich als stabilster Indikator fĂŒr die Differenzierung zwischen rauen und glatten SchneeoberflĂ€chen. Weil aber auch weitere raue SchneeoberflĂ€chen, wie vom Wind modellierte Schneedecken oder kĂŒnstlich angehĂ€ufter Schnee an RĂ€ndern von Skipisten, vergleichbare Texturwerte wie Lawinenkegel zeigen, reichen Texturparameter alleine nicht aus, um Lawinenkegel eindeutig zu identifizieren. Basierend auf den Erkenntnissen aus den vorangegangenen Untersuchungen wird eine Prozessierungskette entwickelt, welche spektrale und direktionale Parameter mit Texturparametern und Informationen aus HilfsdatensĂ€tzen kombiniert. Diese Prozessierungskette wird anhand von Daten des Luftbildscanners ADS40 im Raum Davos evaluiert und verbessert. Dabei werden 94% der in drei Testgebieten vorhandenen Lawinenkegel vom Algorithmus korrekt erkannt. Auch kleinere Kegel mit einer FlĂ€che von weniger als 2000 m2 und Kegel in SchattenhĂ€ngen werden korrekt erfasst. Dieses Ergebnis zeigt das grosse Potential des entwickelten Ansatzes fĂŒr die automatisierte Erkennung und Kartierung von Lawinenkegeln. Die VerfĂŒgbarkeit geeigneter Daten ist aber aufgrund der nach intensiven SchneefĂ€llen hĂ€ufigen noch vorhandenen Bewölkung eingeschrĂ€nkt. Zudem treten vereinzelt Fehlklassifikationen auf. Dies sind hauptsĂ€chlich vom Wind modellierte Schneedecken, kĂŒnstlich angehĂ€ufter Schnee und von spĂ€rlicher Vegetation durchsetzte FlĂ€chen. Trotz diesen EinschrĂ€nkungen kann der in dieser Arbeit entwickelte Ansatz in Zukunft zur Schliessung substanzieller DatenlĂŒcken beitragen. Besonders in Gebirgen von EntwicklungslĂ€ndern, in denen noch kaum verlĂ€ssliche Informationen ĂŒber LawinenniedergĂ€nge existieren, können damit wertvolle Informationen fĂŒr die Gefahrenkartierung und die Siedlungsplanung gewonnen werden. Summary Snow-avalanches kill more people in Switzerland than any other natural hazard and threaten buildings and traffic infrastructure. Rapidly available and accurate information about the location and extent of avalanche events is important for avalanche forecasting, safety assessments for roads and ski resorts, verification of warning products as well as for hazard mapping and avalanche model calibration/validation. Today, isolated observations from individual experts in the field provide information with limited coverage. Only a fraction of all avalanche events can be recorded due to restricted accessibility of many alpine terrain sections during winter season. Information on small to medium size avalanche events within remote regions is collected only sporadically. However, these avalanches notably claim most casualties within the raising number of people pursing off-slope activities. Remote sensing instruments are able to acquire wide-area datasets even over poorly accessible regions. Therefore they are promising tools to close the above- mentioned information gap. This research systematically investigates the potential of spatially high resolved remote sensing instruments for the detection and mapping of snow-avalanche deposits. Fieldspectroradiometer data of nine avalanche deposits are analysed to identify universally valid and significant spectral offsets between avalanche deposits and the adjacent undisturbed snow cover. Promising absorption features are found in the near-infrared region of the electromagnetic spectrum. Nevertheless, the differences are unlikely to be distinct enough for a detection using air- or spaceborne remote sensing instruments. The directional reflection of rough avalanche deposit surfaces is contrary to the directional reflection of smooth undisturbed snow covers. The potential of multriangular remote sensing data for the detection and mapping of avalanche deposits is demonstrated using multiangular data acquired by the airborne scanner ADS40. However, the difference between observation angles (16°) proves to be insufficient for accurate avalanche detection solely on the base of directional properties. Therefore, auxiliary data has to be utilised. The texture of avalanche deposits and undisturbed snow cover can already be distinguished by the naked eye. Using second-order statistics, comprising the spatial distribution of the variation in pixel brightness, textural characteristics in digital image data can be quantified. This is a prerequisite for an automated detection of particular textures. Different established texture measures are tested for their discriminating potential of avalanche deposits and undisturbed snow cover using RC30 aerial images of avalanche deposits acquired within the avalanche winter 1999 in Switzerland. The control parameters such as the size of the filter box are systematically varied to find the ideal settings. The texture measure Entropy is identified as the most distinct and stable indicator to distinguish between rough and smooth snow surfaces. But avalanche deposits are not the only rough snow surfaces within the Alpine winter landscape. For example wind modeled snow surfaces or artificially piled snow at the edge of roads and ski slopes show texture characteristics similar to avalanche deposits. Consequently, a classification approach using texture information only is not sufficient for an accurate identification of avalanche deposits. Based on the findings described above, we develop an avalanche detection and mapping processing chain, combining spectral, directional and textural parameters with auxiliary datasets. The processing chain is tested and improved using data acquired by the airborne scanner ADS40 over the region of Davos, Switzerland. The accuracy assessment, based on ground reference data within three test sites, shows that 94% of all existing avalanche deposits are identified. Even small scale deposits (area < 2000 m2) and deposits within shadowed areas are detected correctly. These results demonstrate the big potential of the proposed approach for automated detection and mapping of avalanche deposits. Yet, cloud cover constrains the availability of appropriate optical remote sensing data after heavy snowfall while wind modeled snow surfaces, artificially piled snow and sparsely vegetated snow surfaces cause sporadic misclassifications. Despite these constraints, the approach developed within this research shows a big potential to fill existing gaps in avalanche information. Especially within alpine areas of developing countries with almost no reliable information on past avalanche events, such an approach may be used to acquire valuable data for hazard mapping and settlement planning

    Multipath Interferences in Ground-Based Radar Data: A Case Study

    Get PDF
    Multipath interference can occur in ground-based radar data acquired with systems with a large antenna beam width in elevation in an upward looking geometry, where the observation area and the radar are separated by a reflective surface. Radiation reflected at this surface forms a coherent overlay with the direct image of the observation area and appears as a fringe-like pattern in the data. This deteriorates the phase and intensity data and therefore can pose a considerable disadvantage to many ground-based radar measurement campaigns. This poses a problem for physical parameter retrieval from backscatter intensity and polarimetric data, absolute and relative calibration on corner reflectors, the generation of digital elevation models from interferograms and in the case of a variable reflective surface, differential interferometry. The main parameters controlling the interference pattern are the vertical distance between the radar antennas and the reflective surface, and the reflectivity of this surface. We used datasets acquired in two different locations under changing conditions as well as a model to constrain and fully understand the phenomenon. To avoid data deterioration in test sites prone to multipath interference, we tested a shielding of the antennas preventing the radar waves from illuminating the reflective surface. In our experiment, this strongly reduced but did not completely prevent the interference. We therefore recommend avoiding measurement geometries prone to multipath interferences

    Can big data and random forests improve avalanche runout estimation compared to simple linear regression?

    Get PDF
    Accurate prediction of snow avalanche runout-distances in a deterministic sense remains a challenge due to the complexity of all the physical properties involved. Therefore, in many locations including Norway, it has been common practice to define the runout distance using the angle from the starting point to the end of the runout zone (α-angle). We use a large dataset of avalanche events from Switzerland (N = 18,737) acquired using optical satellites to calculate the α-angle for each avalanche. The α-angles in our dataset are normally distributed with a mean of 33◩ and a standard deviation of 6.1◩, which provides additional understanding and insights into α-angle distribution. Using a feature importance module in the Random Forest framework, we found the most important topographic parameter for predicting α-angles to be the average gradient from the release area to the ÎČ-point. Despite the large dataset and a modern machine learning (ML) method, we found the simple linear regression model to yield a higher performance than our ML attempts. This means that it is better to use a simple linear regression in an operational context

    Analysis of an artificially triggered avalanche at the nepheline syenite mine on StjernĂžya, Alta, Northern Norway

    Get PDF
    Since 1961, a Nepheline Syenite mine is operated on the island of StjernĂžya in the Altafjord, Northern Norway. The facilities are located in Lillebukt, on the southern side of the island. Above the facilities, the Nabbaren mountain is rising to a height of 727 m a.s.l. Rockfall during summer season and snow avalanches during wintertime pose potential hazards from its slopes. Due to this setting, the mining company has long experience with both physical and non-physical hazard mitigation measures. Apart from physical installations against rockfall and snow avalanches, artificial triggering of the Nabbaren avalanche forms part of this mitigation strategy.The winter of 2013/2014 was characterized by an unusual snow scarcity between December 2013 and March 20, 2014. After this date, large amounts of snow fell during a short period. Due to this new snow loading, together with intensive snowdrift, the mining company decided to artificially trigger the Nabbaren avalanche on April 8, 2014. A D4 slab avalanche was released, subsequently evolving into a mixed dry avalanche of impressive scale. In contrast to avalanches triggered in other years, this avalanche overtopped the avalanche deflecting wall at its one end causing slight damages to some of the factory installations. In order to document the avalanche, an on-site study was carried out shortly after the event. In addition, a WorldView-1 panchromatic satellite image was obtained to map the non-accessible parts of the avalanche. Here, we present findings from the field visit, from image analyses and first modellings of the avalanche run-out

    New insights on permafrost genesis and conservation in talus slopes based on observations at FlĂŒelapass, Eastern Switzerland

    Get PDF
    The talus slope at FlĂŒelapass was the first mountain permafrost study site in Switzerland in the 1970s and the presence of ice-rich permafrost at the foot of the slope has been investigated in the context of several studies focusing on the role of snow cover distribution. We review previously developed hypotheses and present new ones using various data sources, such as temperature measurements in boreholes, a subaquatic DEM generated from unmanned aerial system (UAS) photogrammetry, terrestrial laser scan measurements of snow depth, geophysical ground investigations and automatic time-lapse photography. From this combination of data sources together with observations in the field, an interesting sequence of geomorphologic processes is established at FlĂŒelapass. As a result we show how mass wasting processes can initiate the genesis and long-term conservation of ice-rich permafrost at the base of a talus slope

    Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice

    Get PDF
    Consistent estimates of avalanche size are crucial for communicating not only among avalanche practitioners but also between avalanche forecasters and the public, for instance in public avalanche forecasts. Moreover, applications such as risk management and numerical avalanche simulations rely on accurately mapped outlines of past avalanche events. Since there is not a widely applicable and objective way to measure avalanche size or to determine the outlines of an avalanche, we need to rely on human estimations. Therefore, knowing about the reliability of avalanche size estimates and avalanche outlines is essential as errors will impact applications relying on this kind of data. In the first of three user studies, we investigate the reliability in avalanche size estimates by comparing estimates for 10 avalanches made by 170 avalanche professionals working in Europe or North America. In the other two studies, both completed as pilot studies, we explore reliability in the mappings of six avalanches from oblique photographs from 10 participants and the mappings of avalanches visible on 2.9 km2 of remotely sensed imagery in four different spatial resolutions from 5 participants. We observed an average agreement of 66 % in the most frequently given avalanche size, while agreement with the avalanche size considered “correct” was 74 %. Moreover, European avalanche practitioners rated avalanches significantly larger for 8 out of 10 avalanches, compared to North Americans. Assuming that participants are equally competent in the estimation of avalanche size, we calculated a score describing the factor required to obtain the observed agreement rate between any two size estimates. This factor was 0.72 in our dataset. It can be regarded as the certainty related to a size estimate by an individual and thus provides an indication of the reliability of a label. For the outlines mapped from oblique photographs, we noted a mean overlapping proportion of 52 % for any two avalanche mappings and 60 % compared to a reference mapping. The outlines mapped from remotely sensed imagery had a mean overlapping proportion of 46 % (image resolution of 2 m) to 68 % (25 cm) between any two mappings and 64 % (2 m) to 80 % (25 cm) when compared to the reference. The presented findings demonstrate that the reliability of size estimates and of mapped avalanche outlines is limited. As these data are often used as reference data or even ground truth to validate further applications, the identified limitations and uncertainties may influence results and should be considered
    • 

    corecore