10 research outputs found
Metabolic Characterization of Antifolate Responsiveness and Non-responsiveness in Malignant Pleural Mesothelioma Cells
Antifolates are a class of drugs effective for treating malignant pleural mesothelioma (MPM). The majority of antifolates inhibit enzymes involved in purine and pyrimidine synthesis such as dihydrofolate reductase (DHFR), thymidylate synthase (TYMS), and glycinamide ribonucleotide formyltransferase (GART). In order to select the most suitable patients for effective therapy with drugs targeting specific metabolic pathways, there is a need for better predictive metabolic biomarkers. Antifolates can alter global metabolic pathways in MPM cells, yet the metabolic profile of treated cells has not yet been clearly elucidated. Here we found that MPM cell lines could be categorized into two groups according to their sensitivity or resistance to pemetrexed treatment. We show that pemetrexed susceptibility could be reversed and DNA synthesis rescued in drug-treated cells by the exogenous addition of the nucleotide precursors hypoxanthine and thymidine (HT). We observed that the expression of pemetrexed-targeted enzymes in resistant MPM cells was quantitatively lower than that seen in pemetrexed-sensitive cells. Metabolomic analysis revealed that glycine and choline, which are involved in one-carbon metabolism, were altered after drug treatment in pemetrexed-sensitive but not resistant MPM cells. The addition of HT upregulated the concentration of inosine monophosphate (IMP) in pemetrexed-sensitive MPM cells, indicating that the nucleic acid biosynthesis pathway is important for predicting the efficacy of pemetrexed in MPM cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, and points to potential biomarkers for informing clinical decisions regarding the most effective therapies for patients with MPM
Antifibrotics and mortality in idiopathic pulmonary fibrosis: external validity and avoidance of immortal time bias
Abstract Background and objective Pooled analyses of previous randomized controlled trials reported that antifibrotics improved survival in patients with idiopathic pulmonary fibrosis (IPF), but the results were only based on short-term outcome data from selected patients who met strict criteria. Observational studies/meta-analyses also suggested that antifibrotics improve survival, but these studies failed to control for immortal time bias that considerably exaggerates drug effects. Therefore, whether antifibrotics truly improve long-term survival in patients with IPF in the real world remains undetermined and requires external validity. Methods We used data from the Japanese National Claims Database to estimate the intention-to-treat effect of antifibrotics on mortality. To address immortal time bias, we employed models treating antifibrotic initiation as a time-dependent covariate and target trial emulation (TTE), both incorporating new-user designs for antifibrotics and treating lung transplantation as a competing event. Results Of 30,154 patients with IPF, 14,525 received antifibrotics. Multivariate Fine–Gray models with antifibrotic initiation as a time-dependent covariate revealed that compared with no treatment, nintedanib (adjusted hazard ratio [aHR], 0.85; 95% confidence interval [CI], 0.81–0.89) and pirfenidone (aHR, 0.89; 95% CI, 0.86–0.93) were associated with reduced mortality. The TTE model also replicated the associations of nintedanib (aHR, 0.69; 95% CI, 0.65–0.74) and pirfenidone (aHR, 0.81; 95% CI, 0.78–0.85) with reduced mortality. Subgroup analyses confirmed this association regardless of age, sex, and comorbidities, excluding certain subpopulations. Conclusions The results of this large-scale real-world analysis support the generalizability of the association between antifibrotics and improved survival in various IPF populations
Impact of preexisting interstitial lung disease on mortality in COVID-19 patients from the early pandemic to the delta variant epidemic: a nationwide population-based study
Abstract Background COVID-19 patients with preexisting interstitial lung disease (ILD) were reported to have a high mortality rate; however, this was based on data from the early stages of the pandemic. It is uncertain how their mortality rates have changed with the emergence of new variants of concern as well as the development of COVID-19 vaccines and treatments. It is also unclear whether having ILD still poses a risk factor for mortality. As COVID-19 continues to be a major concern, further research on COVID-19 patients with preexisting ILD is necessary. Methods We extracted data on COVID-19 patients between January 2020–August 2021 from a Japanese nationwide insurance claims database and divided them into those with and without preexisting ILD. We investigated all-cause mortality of COVID-19 patients with preexisting ILD in wild-type-, alpha-, and delta-predominant waves, to determine whether preexisting ILD was associated with increased mortality. Results Of the 937,758 adult COVID-19 patients, 7,333 (0.8%) had preexisting ILD. The proportion of all COVID-19 patients who had preexisting ILD in the wild-type-, alpha-, and delta-predominant waves was 1.2%, 0.8%, and 0.3%, respectively, and their 60-day mortality was 16.0%, 14.6%, and 7.5%, respectively. The 60-day mortality significantly decreased from the alpha-predominant to delta-predominant waves (difference − 7.1%, 95% confidence intervals (CI) − 9.3% to − 4.9%). In multivariable analysis, preexisting ILD was independently associated with increased mortality in all waves with the wild-type-predominant, odds ratio (OR) 2.10, 95% CI 1.91–2.30, the alpha-predominant wave, OR 2.14, 95% CI 1.84–2.50, and the delta-predominant wave, OR 2.10, 95%CI 1.66–2.66. Conclusions All-cause mortality rates for COVID-19 patients with preexisting ILD decreased from the wild-type- to the more recent delta-predominant waves. However, these patients were consistently at higher mortality risk than those without preexisting ILD. We emphasize that careful attention should be given to patients with preexisting ILD despite the change in the COVID-19 environment
Changes in the Characteristics and Outcomes of COVID-19 Patients from the Early Pandemic to the Delta Variant Epidemic: A Nationwide Population-based Study
The coronavirus disease 2019 (COVID-19) pandemic has dramatically changed because of virus mutations, vaccine dissemination, treatment development and policies, among other factors. These factors have a dynamic and complex effect on the characteristics and outcomes of patients. Therefore, there is an urgent need to understand those changes and update the evidence. We used a large-scale real-world data set of 937,758 patients with COVID-19 from a nationwide claims database that included outpatients and inpatients in Japan to investigate the changes in their characteristics, outcomes and risk factors for severity/mortality from the early pandemic to the delta variant-predominant waves. The severity of COVID-19 was defined according to the modified World Health Organization clinical-progression ordinal scale. With changing waves, mean patient age decreased, and proportion of patients with comorbidities decreased. The incidences of “severe COVID-19 or death (i.e. ≥severe COVID-19)” and “death” markedly declined (5.0% and 2.9%, wild-type-predominant; 4.6% and 2.2%, alpha variant-predominant and 1.4% and 0.4%, delta variant-predominant waves, respectively). Across the wave shift, risk factors for ≥severe COVID-19 and death, including older age, male, malignancy, congestive heart failure and chronic obstructive pulmonary disease, were largely consistent. The significance of some factors, such as liver disease, varied as per the wave. This study, one of the largest population-based studies on COVID-19, showed that patient characteristics and outcomes changed during the waves. Risk factors for severity/mortality were similar across all waves, but some factors were inconsistent. These data suggest that the clinical status of COVID-19 will change further with the coming epidemic wave.</p