28 research outputs found

    Stretchable Self-Healing Polymeric Networks with Recyclability and Dual Responsiveness

    Get PDF
    Intelligent polymers with tough networks are of considerable significance for thedevelopment of highly proficient polymer science and technology. In this work, polymeric elastomers with integrated stretchable and self-healable characteristics were designed by cross-linking hyperbranched polymers with flexible segments. The hyperbranched polymer with multiple terminal groups provided various cross-linking points, so that mechanically robust networks could be achieved. Driven by the reversibility of imine and disulfide bonds employed, the elastomers exhibited good self-healing property and the healing efficiency reached up to 99% under ambient environments. Furthermore, the dynamic reversibility of the polymers was investigated at molecular level. The imine and disulfide bonds were incorporated into the networks to construct soluble and recyclable hyperbranched polymer with pH and redox responsiveness via A2+B3 approach and Schiff base polymerization. The polymers containing imine bonds could complete the polymerization–depolymerizationtransition and undergo reversible cycles for several times through changing pH. Moreover, in the presence of disulfide bonds, the polymers were provided with redox cleavage property triggered by dithiothreitol. This study may provide new opportunities for the design and application of intelligent polymers with tough networks through regulating topological structures

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    Research progress and future perspectives on electromagnetic wave absorption of fibrous materials

    No full text
    Summary: Electromagnetic waves have caused great harm to military safety, high-frequency electronic components, and precision instruments, and so forth, which urgently requires the development of lightweight, high-efficiency, broadband electromagnetic waves (EMW) absorbing materials for protection. As the basic fibrous materials, carbon fibers (CFs) and SiC fibers (SiCf) have been widely applied in EMW absorption due to their intrinsic characteristics of low density, high mechanical properties, high conductivity, and dielectric loss mechanism. Nevertheless, it has remained a great challenge to develop lightweight EMW-absorbing fibrous materials with strong absorption capability and broad frequency range. In this review, the fundamental electromagnetic attenuation mechanisms are firstly introduced. Furthermore, the preparation, structure, morphology, and absorbing performance of CFs and SiCf-based EMW absorbing composites are summarized. In addition, prospective research opportunities are highlighted toward the development of fibrous absorbing materials with the excellent absorption performance

    Scientific issues on effective development of marine shale gas in southern China

    No full text
    Shale gas resources are abundant in China and have been discovered in some areas. They are widely distributed in the Cambrian, Ordovician and Silurian strata in Southern China, with technically recoverable resources accounting for 3/4 of the whole country. The Southern China will be the main area for shale gas development. Compared with North America, there are a lot of differences in shale gas exploration and development in Southern China which include intensive tectonic movements in marine shale, complex stress field, deep burial depth, special surface condition, etc. With those, it could be ineffective if the existing theories and techniques of shale gas developed in America are taken for granted. The nano-pore formation effects on shale gas production are unclear; Prediction methods for shale gas production have not been established; In the process of drilling, the horizontal section collapses seriously and the drilling cycle is too long; Stimulation effect is not ideal, with low single well production. In order to effectively develop shale gas in Southern China, three scientific issues should be studied which include quantitative characterization of nano-pore formation and multi-scale storage space, mechanisms of nonlinear flow under multi-field coupling in complex medium, mechanical mechanisms of shale instability and fracture network formation. Key words: shale gas, effective development, scientific issue, southern marine shale, nano-por

    Recoverable and Self-healing Electromagnetic Wave Absorbing Nanocomposites

    Get PDF
    Recent advancements in electronics engineering require materials with the resiliency and sustainability to extend their life time. With this regard, we presented a sustainable multi-functional nanocomposites strategy by introducing dynamic imine bonds based polyazomethine (PAM) as molecular interconnects and Fe3O4-loaded multiwalled carbon nanotubes as electromagnetic (EM) wave absorbing units. Driven by the reversible dynamic imine bonds, our materials show robust spontaneous self-healing with excellent healing efficiencies of 95 % for PAM and 90 % for nanocomposite, and an accelerated recovery under a moderate mechanical stimulus. By adding Fe3O4-loaded multiwalled carbon nanotubes, the hybrids show excellent EM wave absorbing properties with 50% increment on minimum reflection coefficient (-40.6 dB) than the reported value. We demonstrate a full degradability by decomposing a nanocomposite sheet of 100 mg in an acidic solution within 90 min at room temperature. The nanofillers and monomers after degradation can be re-used to synthesis nanocomposites. The testing results for recoverable nanocomposites show a good retention on mechanical property. This novel strategy may shed a light on the downstream applications in EM wave absorbing devices and smart structures with great potential to accelerate circular economy

    Uncertainty Quantification of WRF Model for Rainfall Prediction over the Sichuan Basin, China

    No full text
    The mesoscale Weather Research and Forecasting (WRF) model has been widely employed to forecast day-ahead rainfalls. However, the deterministic predictions from the WRF model incorporate relatively large errors due to numerical discretization, inaccuracies in initial/boundary conditions and parameterizations, etc. Among them, the uncertainties in parameterization schemes have a huge impact on the forecasting skill of rainfalls, especially over the Sichuan Basin which is located east of the Tibetan Plateau in southwestern China. To figure out the impact of various parameterization schemes and their interactions on rainfall predictions over the Sichuan Basin, the Global Forecast System data are chosen as the initial/boundary conditions for the WRF model and 48 ensemble tests have been conducted based on different combinations of four microphysical (MP) schemes, four planetary boundary layer (PBL) schemes, and three cumulus (CU) schemes, for four rainfall cases in summer. Compared to the observations obtained from the Chinese ground-based and encrypted stations, it is found that the Goddard MP scheme together with the asymmetric convective model version 2 PBL scheme outperforms other combinations. Next, as the first step to explore further improvement of the WRF physical schemes, the polynomial chaos expansion (PCE) approach is then adopted to quantify the impacts of several empirical parameters with uncertainties in the WRF Single Moment 6-class (WSM6) MP scheme, the Yonsei University (YSU) PBL scheme and the Kain-Fritsch CU scheme on WRF rainfall predictions. The PCE statistics show that the uncertainty of the scaling factor applied to ice fall velocity in the WSM6 scheme and the profile shape exponent in the YSU scheme affects more dominantly the rainfall predictions in comparison with other parameters, which sheds a light on the importance of these schemes for the rainfall predictions over the Sichuan Basin and suggests the next step to further improve the physical schemes
    corecore