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ABSTRACT 

Intelligent polymers with tough networks are of considerable significance for the 

development of highly proficient polymer science and technology. In this work, polymeric 

elastomers with integrated stretchable and self-healable characteristics were designed by 

cross-linking hyperbranched polymers with flexible segments. The hyperbranched polymer 

with multiple terminal groups provided various cross-linking points, so that mechanically 

robust networks could be achieved. Driven by the reversibility of imine and disulfide bonds 

employed, the elastomers exhibited good self-healing property and the healing efficiency 

reached up to 99% under ambient environments. Furthermore, the dynamic reversibility of 

the polymers was investigated at molecular level. The imine and disulfide bonds were 

incorporated into the networks to construct soluble and recyclable hyperbranched polymer 

with pH and redox responsiveness via A2+B3 approach and Schiff base polymerization. The 

polymers containing imine bonds could complete the polymerization–depolymerization 

transition and undergo reversible cycles for several times through changing pH. Moreover, in 

the presence of disulfide bonds, the polymers were provided with redox cleavage property 

triggered by dithiothreitol. This study may provide new opportunities for the design and 

application of intelligent polymers with tough networks through regulating topological 

structures.  

KEYWORDS: reversible covalent bonds, hyperbranched polymers, stretchable, recyclable, 

self-healing 



INTRODUCTION 

Dynamic covalent bonds (DCB),1-3 which can be dissociated and regenerated with changed 

environmental factors including temperature, pressure or pH, has received dramatic interest. 

This adaptability offers great potential for developing functional materials through the 

utilization of DCB.4-5 Thermally activated alkoxyamine bond,6-7 pH-sensitive imine,8-10 

acylhydrazone bond,11-13 redox and visible light-induced diselenide bond,14 thermally 

reversible Diels–Alder reaction,15-16 and multi-responsive disulfide bond triggered under pH, 

light, and redox conditions17-19 can all be used as reversible covalent bonds.20 If the DCB is 

employed to construct polymeric networks, the resulting dynamic networks or dynamic 

polymers can be endowed with fascinating smart properties. It is well known that the main 

objective of the emphasis on traditional polymer design is to enhance thermal, mechanical, 

electrical, optical, magnetic, or chemical properties and prevent the cleavage of bonds in case 

the performance deteriorates. Once the chemical bonds are broken, they may lose the 

practical value because the irreversible bonds are not reparable. Unlike traditional polymers; 

however, the dynamic networks or dynamic polymers with reversible characteristics can 

reorganize or optimize the networks on exposure to stimulus and be adaptable to 

environmental change through the cleavage and recombination of the reversible covalent 

bonds.4,21 Therefore, the self-healable and recyclable polymers containing DCB are attractive 

because they can be regenerated with functionalities recovered and extend usage lifetime, and 

reduce environmental burden.21-24 

 

As one of the dynamic bonds, imine bond (C=N) is easily formed from an amine and an 

aldehyde under weakly acidic environments.25-26 The imine bonds generated from aromatic 



amine and aromatic aldehyde are more stable than their aliphatic counterparts. However, the 

generation of a lot of benzene in polymeric architecture leads to the rigid backbone, which 

may render the polyazomethine27-28 poorly soluble, thus limiting its applications in many 

fields. On the other hand, the rigid structure can be used to regulate the mechanical properties 

of polymers associated with moderate soft segments. Besides, disulfide bond is also attractive 

due to its merits in facile operation, easily available raw materials, and multiple 

stimuli-responsiveness. 

 

Nowadays, various topological structures such as linear,29 cross-linked,30 dendritic,31 

hyperbranched,32 star-shaped,33 brush-shaped,34 and polyrotaxane networks35 are widely 

applied to constructing polymeric networks. Notably, hyperbranched polymers show a great 

deal of special features, such as low intrinsic viscosity, low inter-chain entanglements, 

excellent solubility, and the existence of multi-functional groups.36-38 Therefore, if 

hyperbranched architecture is incorporated into polyazomethine, a type of soluble 

polyazomethine with good performance could be achieved. Moreover, taking advantage of 

hyperbranched structure with large number of terminal groups, robust cross-linking networks 

can be easily constructed. The investigation opens up new avenues for designing dynamic 

polymers and networks with ideal structures for applications in self-healing materials, 

molecular logical gate,39-40 programmable polymers,41-42 and recyclable and sustainable 

materials.43 

 

In this work, the reversible imine and disulfide bonds were combined to prepare the 



hyperbranched polymer with intelligent dynamic response characteristics, and the stretchable 

self-healing polymeric networks were designed benefiting from the special features of 

hyperbranched architecture. Herein, the dynamic hyperbranched polyazomethine (hb-PAM) 

with terminal aldehyde groups and good solubility was synthesized via A2+B3 approach. At 

the molecular level, the dynamic reversibility of hb-PAM was systematically investigated. 

For the pH-sensitivity of imine bond, hb-PAM could realize 

polymerization–depolymerization transition for several times. Meanwhile, hb-PAM 

containing disulfide bond was endowed with redox cleavage property. Besides, hb-PAM 

could be further cross-linked with soft segments to achieve stretchable and tough self-healing 

polyazomethine (SH-PAM). SH-PAM exhibited good elasticity and self-recovery capability. 

Moreover, the mechanical performances of SH-PAM elastomers were tunable, to obtain 

polymeric networks with high strength or stretchability. Remarkably, SH-PAM elastomers 

were demonstrated to present excellent self-healing property and dual responsiveness. 

 

EXPERIMENTAL SECTION 

2.1. Materials 

Trimethylolethane (TME, 98.0%), p-toluenesulfochloride (TsCl, 99.0%) and 4, 

4'-dithiodianiline (98.0%) were purchased from TCI (Shanghai) Development Co., Ltd. 

4-Hydroxybenzaldehyde (99.0%), potassium carbonate (99%), dithiothreitol (DTT, 99%) and 

poly(propylene glycol)bis(2-aminopropyl ether) 2000 (PEA 2000) were provided by Aladdin  

Shanghai Co. All regents were used as received without further purification.  

 



2.2. Synthesis of hyperbranched polyazomethine 

1, 1, 1-Tris[(4-formylphenoxy)methyl]ethane (FPME) was synthesized as previously reported 

method9 with a little improvement (see the details in Supporting Information). FPME (0.290 

g, 0.6 mmol) was completely dissolved in N, N-dimethylformamide (DMF, 10 mL), followed 

by adding glacial acetic acid (AcOH, 60 μL, 0.3% v/v) as an acid catalyst. Then 4, 

4'-dithiodianiline (0.152 g, 0.6 mmol) dissolved in anhydrous DMF (10 mL) was added 

dropwise to the solution for over 1 h. The mixture was further reacted at 25 oC under nitrogen 

atmosphere for 26 h. After DMF was evaporated, the mixture was redissolved in 

tetrahydrofuran (THF, 5 mL) and subsequently added dropwise into methanol (60 mL) with 

stirring. The formed precipitate was collected and dried in vacuum at 35 °C. Eventually, the 

yellow powders of hyperbranched polyazomethine (hb-PAM) were obtained (0.388 g, 

92.3%). 

 

2.3. Reversibility of imine bonds 

The hb-PAM was dissolved in DMF, followed by adding hydrochloric acid (HCl, 1% v/v) to 

the solution to cleave hb-PAM. After a certain time, HCl was saturated with equivalent 

amount of triethylamine (NEt3), which resulted in the formation of the salts of HCl and NEt3. 

Then the de-monomers were extracted with dichloromethane. Subsequently, the solvent was 

evaporated. To regenerate hyperbranched polyazomethine hb-PAM C 
1 , the purified 

de-monomers were dissolved in DMF, to which AcOH (0.3% v/v) was added. The reaction 

conditions of hb-PAMC 
1  were same as that of hb-PAM. After the reaction, a part of hb-PAMC 

1  

and residual monomers were extracted with dichloromethane, from which the AcOH and 



DMF were removed with water. The remaining solution was used for the next step. In the 

same way, imine linkage was constantly broken and reformed, and correspondingly 

hyperbranched polyazomethines hb-PAMC 
2  to hb-PAMC 

4  were obtained. 

 

2.4. Reduction degradation of hyperbranched polyazomethine 

The hb-PAM (5 mg) and DTT (15 mg) were dissolved in THF (1 mL, in flask) with stirring 

under nitrogen atmosphere at room temperature to start the disulfide degradation in polymer. 

 

2.5. Preparation of self-healing polyazomethine 

Typically, FPME was dissolved in anhydrous DMF, which was followed by the addition of 

AcOH (0.3% v/v). Then 4, 4'-dithiodianiline dissolved in DMF was added dropwise over 1 h. 

The mixture was further reacted at 25 oC under nitrogen atmosphere for 26 h. Subsequently, 

PEA dissolved in DMF was added to the solution. After the mixture was further reacted for 

12 h, the solution was cast into a Teflon mold. Finally, the resulting polymer was put into an 

oven at 40, 50, and 60 °C for 3 days. Two kinds of self-healing polyazomethine (SH-PAM-1 

and SH-PAM-2) were prepared according to the above methods. The molar ratios of FPME, 4, 

4'-dithiodianiline, and PEA were 2:2:1 and 2:1:2 for SH-PAM-1 and SH-PAM-2, respectively.  

 

2.6. Characterizations 

Nuclear magnetic resonance (NMR) analyses were performed on a Bruker Avance 400 

spectrometer (Bruker Biospin, Switzerland). The deuterated dimethyl sulfoxide (DMSO-d6) 

and deuterated chloroform (CDCl3) were used as solvents. Fourier transform infrared (FTIR) 



spectroscopy analyses were recorded on an FTIR spectrophotometer (Perkin-Elmer, USA). 

The ultraviolet–visible spectra (UV–vis) were performed using a Shimadzu UV2550 UV–vis 

spectrophotometer (Shimadzu UV2550, Japan). Molecular weight and molecular weight 

distribution were measured on size exclusion chromatography (SEC) with multi-angle laser 

light scattering systems (MALLS, DAWN EOS, Wyatt, USA) quipped with a Waters 515 

pump, an autosampler and two MZ gel columns (103 Å and 104 Å). The flow rate was 0.5 

mL min−1 in THF (HPLC grade) at 25 °C. The refractive index increments of polymers in 

THF were measured at 25 °C on a differential refractometer (OptilabrEX, Wyatt, USA). The 

mechanical tensile tests (dumb-bell shaped specimens, 12 mm × 2 mm × 0.8 mm) were 

performed using an Instron E1000 all-electric dynamic test instrument with a stretching speed 

of 20 mm min-1 according to ISO37-4 standard. 

 

RESULTS AND DISCUSSION 

3.1. Synthesis of hyperbranched polyazomethine 

The synthesis process of hb-PAM is exhibited in Figure 1. It could be obtained via Schiff 

base polymerization between amino groups of 4,4'-dithiodianiline (A2) and aldehyde groups 

of FPME (B3). Commonly, gelation easily occurs in A2+B3 system; however, it is important 

to control the reaction conditions. Herein, the rate of reaction was controlled by slowly 

adding A2 monomer to B3 monomer in dilute solution, as well as a catalytic amount of acid. 

Moreover, the molar ratio of the reactive monomers was adjusted to 1:1. By taking these 

factors into account, a type of hyperbranched polymer based on imine bond (hb-PAM) with 

excellent solubility was successfully synthesized. 



 

The structure of hb-PAM was identified by FTIR and 1H NMR spectroscopy. As shown in 

Figure 2, compared to the monomers, a new peak appears at 1624 cm-1 for hb-PAM, 

attributed to the generation of imine bond (CH=N). Moreover, the two broad peaks in the 

range of 3300–3700 cm-1 resulted from amine groups almost disappear and a peak at 1680 

cm-1 assigned to carbonyl (C=O) becomes weaker, indicating the successful synthesis of 

hb-PAM with terminal aldehyde groups (CHO). Figure 3a exhibits 1H NMR spectra of 

hb-PAM, where the appearance of the peak at 8.37 ppm further validates the formation of 

imine bond. Furthermore, weak peak at 6.70 ppm ascribed to the protons of benzene near the 

amine reveals the presence of a little unreacted amine groups resulting from steric hindrance. 

The proton peak of the end aldehyde groups is also observed at 9.91 ppm. In addition, the 

Mw,SEC of hb-PAM is 19,600 g mol-1 and the PDI is 1.53 (Table 1). The increased molecular 

weight evidently demonstrated the polycondensation. The MALLS is an effective technique 

for determining the absolute molar mass, thus the combination of SEC with MALLS analysis 

could avoid the mismatch between hyperbranched architecture and linear polystyrene 

calibration in normal SEC technology. 

 

3.2. Reversibility of imine bonds 

The formation of imine bond could be accelerated by adding a tiny amount of acid. At low 

pH; however, the imine linkage was cleaved.10 Therefore the polymer containing imine bond 

could be decomposed into monomers under the acidic conditions, and the de-monomers 

could polymerize again to generate polymer via regulating the reaction conditions as shown 



in Figure 1. The pH responsive cleavage of hb-PAM was investigated first. When the 

apparent pH was adjusted to 4–5 by adding HCl (1% v/v) to the solution of hb-PAM, the 

decomposition of imine bonds occurred. Moreover, the polymer degraded into monomers 

over time. The de-monomers were extracted with dichloromethane and washed with water in 

order to remove residual HCl and some other impurities, in order to avoid any adverse effect 

on the subsequent reaction. The cleavage of hb-PAM was examined by 1H NMR 

spectroscopy and SEC-MALLS. Figure 3b presents 1H NMR spectra of purified 

de-monomers in d6-DMSO. Compared to the spectra of hb-PAM, the proton peak of imine at 

8.52 ppm becomes much weaker, the proton peak at 9.86 ppm corresponding to the terminal 

aldehyde groups is relatively strong, and the proton peak of amine groups at 5.50 ppm 

appears. The residual proton peak of imine resulted from high reactivity between amine and 

aldehyde groups, as well as the reversibility of the reaction. Figure 4 shows the SEC trace of 

the de-monomers, revealing that the time of appearance of peak was much later than that of 

hb-PAM, and the distinct bimodal distribution could be observed, indicating the presence of 

two monomers and some oligomers. The dependence of cleavage of the imine bond on time 

was further investigated in THF and the pH value of the solution was adjusted to about 5 by 

adding AcOH. The reproduced UV–visible absorption spectral curves of hb-PAM measured 

in various time intervals were obtained as depicted in Figure 3c. Clearly, intensity of the 

absorption band at around 338 nm, corresponding to conjugated imine, decreases with time. 

After 9 h, the system reached equilibrium. These results demonstrated imine bond could be 

cleaved when the pH below 5.0. 

 



Then the de-monomers regenerating hyperbranched polyazomethine and the transition 

process of polymer and de-monomers were explored. The de-monomers were still highly 

active to polymerize, forming hb-PAMC 
1  under the mild reaction conditions same as that of 

hb-PAM. Herein, the transition process of polymer and de-monomers was repeated for four 

circles in one system, and the corresponding polymers (hb-PAMC 
2 , hb-PAMC 

3 , hb-PAMC 
4 ) were 

obtained. Each time the polymer was depolymerized, the results were monitored by 1H NMR 

spectroscopy. As shown in Figure 3b, the 1H NMR spectra of de-monomers (MD 
1-4) are almost 

the same, and all peaks at 8.52 ppm assigned to the imine proton CH=N become weak, 

indicating that the depolymerization to monomers was successfully triggered at low pH. 

Figure 3a presents that the 1H NMR spectra of hb-PAM and hb-PAMC 
2-4 remain almost the 

same, and the characteristic signals of proton on CH=N bond (8.37 ppm) grow stronger. 

Moreover, in the SEC traces, the peaks of hb-PAM and hb-PAMC 
2-4 appear almost at the same 

time at about 12 min (elution time) as shown in Figure S4 in Supporting Information. The 

similarity of the traces might be coincidental and more variation would be expected if these 

experiments were repeated. The corresponding molecular weights of the cyclic hb-PAMs are 

summarized in Table 1. Figure 3d depicts relatively small change in weight average 

molecular weight with cyclic times for hb-PAM and hb-PAMC 
2-4. After the dissociation of 

hb-PAM, the de-monomers still have the ability to polymerize to regenerate the 

hyperbranched polymer with high molecular weight close to that of the original polymer 

hb-PAM. The results indicate that the polymers based on imine bond had the characteristic of 

dynamic reversibility, which was controllable, and the polymer–monomer transition was able 

to undergo repeated cycles through regulating pH. 



 

3.3. The intramolecular cyclization of hb-PAM and hb-PAMC 
2-4 

Intramolecular cyclization occurs during the synthesis process of hyperbranched polymers via 

A2+B3 polycondensation. For the obtained hyperbranched polymers with A or B terminal 

groups, the r parameter can be defined to determine the degree of intramolecular 

cyclization.44 In our previous work,45-46 the quantitative relationship between cyclic structures 

and structural units for hyperbranched polymers was derived as: 

                    (1) 

where N, NC, NA0, NA1, NB0, NB1, and NB2 represents the number of total macromolecules, 

cyclic structures, A0, A1, B0, B1 and B2 units, respectively. Noteworthy, A0 and A1 units refer 

to the structural units containing 0 and 1 A group, and B0, B1, and B2 units refer to the 

structural units containing 0, 1, and 2 B groups (Figure 5). Equation (1) after the 

transformation is represented as the following equation: 

             (2) 

(NA1+NB1+2NB2) is total number of terminal groups and (NB0 + NB1 + NB2) means total 

number of B units. In Equ. 2, it can be found that the quantitative relationship between the 

end groups and B units closely correlated with the intramolecular cyclization. As a 

consequence, a parameter r is defined as the number proportion of total terminal groups to B 

units: 

             
(3) 

Here, the r value is in inversely proportional to degree of intramolecular cyclization. Through 

the integration of proton peak area in 1H NMR spectra, the r value can be calculated. Table 1 
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summarizes that the r values of dynamic hyperbranched polymers hb-PAM and hb-PAMC 
2-4 

were all above 1.5, indicating that the intramolecular cyclization of the polymers was low. 

The r value of hb-PAM was lower than that of hb-PAMC 
2-4. This was attributed to the fact that 

hb-PAMC 
2-4 specimens were not purified, and they contained unreacted monomers leading to 

decreasing value of intramolecular cyclization. Moreover, the r values of hb-PAMC 
2-4 did not 

change much, illustrating that the topological structure of the polymers remained nearly the 

same after repeatedly experiencing the reversible polymer–monomer transitions.  

 

3.4. Reductive degradation of hyperbranched polyazomethine 

The DTT was utilized to trigger the degradation of the hb-PAM. The disulfide bonds have the 

characteristic of redox responsibility; therefore, the hb-PAM containing disulfide bonds could 

be dissociated by reductant. The cleavage of the polymer was monitored by SEC-MALLS. 

Figure 4 exhibits that the degradation behavior could be observed in the SEC trace. 

Compared to the peak of hb-PAM in the range from 12 to 20 min, a new peak of the 

degradation product appeared at 24 min, indicating that the hb-PAM was reduced by DTT.  

 

3.5. Mechanical performance of the cross-linked polyazomethine 

In polymerization system, the higher the functionality of the reactants, the more likely 

gelation occurs. The hyperbranched polymers (hb-PAM) have abundant functional end 

groups. Therefore, they are exceptionally useful in curing systems, compared to 

low-functionality monomers. The hb-PAM was further cross-linked with PEA through Schiff 

base reaction to achieve self-healing polyazomethine (SH-PAM), as shown in Figure 6. The 



hb-PAM with amounts of aldehyde terminal groups facilitated the formation of 

three-dimensional cross-linked networks. Moreover, PEA 2000 served as a soft and 

hydrophobic segment, thus we could obtain a stretchable polymeric network. On the one 

hand, soft macromolecular chains contribute to enhance the flexibility and deformability. On 

the other hand, incorporating hydrophobic PEA segments into the cross-linked networks is to 

avoid hydrolysis of imine bond.  

 

The mechanical performances of cross-linked polymers were greatly influenced by the ratio 

of monomers. Two kinds of SH-PAM (SH-PAM-1 and SH-PAM-2) were designed and 

prepared through adjusting the content of 4, 4'-dithiodianiline and PEA, in which the total 

molar ratio of amino and aldehyde was maintained at 1:1. The typical stress-strain behaviors 

for SH-PAM-1 and SH-PAM-2 are shown in Figure 7a. SH-PAM-1 presented maximum 

stress of 3.8 MPa and Young’s modulus of 2.4 MPa, which were about 10 times higher than 

that of SH-PAM-2. While the SH-PAM-2 exhibited excellent stretchability with fracture 

strain of 510% (Figure 7b). The above results were for the reason that there were more rigid 

benzene and conjugated structure, as well as cross-linking points in SH-PAM-1. It is 

acknowledged that the molar ratio of A2 to B3 monomers controlled at 1:1 is more prone to 

obtain hyperbranched macromolecules with higher molecular weight,47 indicating a larger 

number of terminal groups per polymeric chain. Additionally, in our previous work, an 

elastomer based on imine bond cross-linked through PEA and FPME was reported, with a 

peak stress of 0.79 MPa and fracture strain of 215%.9 Obviously, SH-PAM-1 exhibited more 

robust mechanical property.      



 

SH-PAM-1 was selected for further investigation. The cross-linked networks exhibited good 

elasticity and self-recovery capability. As shown in Figure 7c, loading-unloading cycle tests 

were performed with stretching to a strain of 50%. During the consecutive loading-unloading 

process, it showed obvious hysteresis, resulting from the energy dissipation. Subsequently, in 

cycle 2, the energy dissipation (within the loop of a cycle) was decreased, which could be 

ascribed to the enhancement of elastic deformation. After relaxing for 30 min, the sample was 

allowed to stretching again. It was found that the curve almost overlapped with that of cycle 1, 

indicating the sample fully recovered with the mechanical performance restored to its original 

state. This phenomenon might be assigned to the synthetic action of imine and disulfide 

bonds with dynamic characteristics through bond breakage and reformation. 

 

3.6. Self-healing performance of the cross-linked polyazomethine 

Driven by the reversibility of imine and disulfide bonds, the as-prepared SH-PAM elastomers 

were endowed with excellent self-healing property. A piece of SH-PAM film specimen was 

cut from the middle, and one of them was dyed in red color. Then they were brought into full 

contact. After healing, the sample could be subjected to be bent and twisted (Figure 7d). 

Then, the quantitative analysis of self-healing characteristic was conducted by the uniaxial 

tensile tests at 25 °C (Figure 7e, f). The healing efficiency is deduced from the ratio of the 

fracture strain of the healed sample to that of the original sample. The calculations proved 

that the time-dependent healing efficiency of SH-PAM-1 was about 91% after healing for 48 

h. Remarkably, the healing efficiency of SH-PAM-2 reached to 99% after 12 h. The 



difference of healing efficiency between SH-PAM-1 and SH-PAM-2 was due to the 

flexibility of networks. SH-PAM-2 was softer than SH-PAM-1, leading to the molecular 

chains moving more easily. The ideal self-healing property results from the mobility of soft 

segments and synthetic effects of imine and disulfide bonds. The soft segments in the 

polymer networks facilitate the intimate contact between the broken surfaces. Therefore, the 

imine bonds could be reformed by the active aldehyde and amino groups generated at the 

scratched surfaces. Meanwhile, with the exchange and metathesis of imine, the system is in 

dynamic equilibrium.25 For the reversibility of the reaction, there might be unreacted terminal 

groups which could also form imine bond, contributing to self-healing process. Moreover, the 

aromatic disulfide undergoes inconstant exchange at room temperature,18 leading to the 

healing of the cracked SH-PAM elastomers.   

 

3.7. Dual responsiveness of self-healing polyazomethine 

At the molecular levels, the pH and redox responsiveness of imine and disulfide bonds were 

investigated through the soluble hb-PAM. Therefore, undoubtedly, the cross-linked SH-PAM 

elastomers were provided with dual responsiveness. Figure 8 depicts that the soaking of 

SH-PAM-1 in the solution of AcOH, led to their complete dissociation. The solid state was 

transformed to liquid solution due to the cleavage of imine linkages and dissociation of 

cross-linked networks at low pH (Figure 8a, b). Interestingly, the cross-linked polymer could 

be prepared after adjusting pH and evaporating solvent at 80 °C (Figure 8c). Similarly, when 

DTT was added onto the surface of SH-PAM-1, the bulk polymer was completely 

decomposed. After exposure to air environments and volatilization of solvent, the film could 



be reformed due to the redox feature of disulfide bonds. Therefore, dual responsiveness of 

SH-PAM-1 could conveniently be achieved by common operations of dissociation and 

evaporation based on cleavage and polymerization of imine or disulfide bonds. 

 

CONCLUSIONS 

Stretchable and self-healable elastomers with dual pH and redox responsibility were 

successfully synthesized, which were cross-linked through recyclable hyperbranched 

polymers based on reversible covalent bonds. The soluble hb-PAM exhibited the transitional 

behaviors between polymers and de-monomers. The polymer containing imine bonds could 

be decomposed into monomers at low pH, and the de-monomers could polymerize again to 

generate the hyperbranched polymer via regulating the reaction conditions. Moreover, this 

process could be repeated for several times. The topological structures of the regenerated 

hb-PAM nearly remained the same after undergoing the reversible polymer–monomer 

transitions. Moreover, the hb-PAM was provided with redox cleavage ability triggered by 

DTT. Benefiting from the hb-PAM with multiple terminal groups, furthermore, the hb-PAM 

could be cross-linked with PEA through Schiff base reaction to achieve tough networks. 

Furthermore, the SH-PAM elastomers demonstrated excellent self-healing performance of 

with a healing efficiency as high as 99% under ambient environment. Moreover, the SH-PAM 

elastomers exhibited remarkable dual responsiveness. The dynamic polymers might have 

promising applications in smart structures, programmable polymers, and soft electronics 

fields. 
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Figure 1. Schematic illustration of synthesis of hyperbranched polymer (hb-PAM) based on 

imine and disulfide bonds, with reversible pH and redox responsiveness. 



 

 

 

 

Figure 2. FTIR spectra of A2 monomer (4, 4'-dithiodianiline), B3 monomer (1, 1, 

1-tris[(4-formylphenoxy)methyl]ethane) and hyperbranched polyazomethine (hb-PAM) 

between 3600–1000 cm-1. 



 

 

 

Figure 3. (a) 1H NMR spectra of hyperbranched polyazomethines in CDCl3, (b)1H NMR 

spectra of de-monomers in d6-DMSO, (c) UV–visible absorption spectra of hb-PAM obtained 

at various time intervals at pH = 5, (d) Change in average molecular weight of hyperbranched 

polyazomethines for four cycles of depolymerization–repolymerization. 



 

 

 

Figure 4. SEC trace of the hb-PAM and hb-PAM degraded by acid and DTT with a flow rate 

of 0.5 mL min−1 in THF. 



 

 

 

 

 

Figure 5. Division of topological units of the A2 monomer, B3 monomer and hyperbranched 

polymer. 



 

 

 

 

 

Figure 6. Schematic illustration of fabrication of self-healing polyazomethine (SH-PAM) 

elastomer cross-linked through Schiff base reaction. 

 



 

Figure 7. (a) Stress–strain curves of SH-PAM elastomers. (b) Young’s modulus, maximum 

stress, and fracture strain of SH-PAM elastomers. (c) Recovery and cyclic loading-unloading 

curves of SH-PAM-1 to a strain of 50%. (d) Optical images showing self-healing behavior of 

SH-PAM-2. (e) Stress–strain curves of the original and self-healed elastomers at various 

healing times for (e) SH-PAM-1 and (f) SH-PAM-2. The tensile rates in (a), (c), (e), and (f) 

were 20 mm min-1. 



 

 

 

 

 

 

Figure 8. Optical photographs showing the responsiveness of SH-PAM-1: (a) the original, (b) 

soaking in the solution of AcOH or DTT, and (c) after evaporation of solvent. 



 
 

Table 1. Characterization results of A2+B3 type hyperbranched polyazomethines 

Sample Mw 
(g mol-1) 

Mn 
(g mol-1) 

PDIa rb 

PAM 19,600 13,300 1.47 1.53 
PAMC 

1  17,000 12,100 1.40 1.92 
PAMC 

2  18,400 12,200 1.51 1.92 
PAMC 

3  16,100 11,800 1.37 1.74 
PAMC 

4  19,500 12,900 1.51 1.83 

aPDI = Mw/Mn, br value was calculated as the integral ratio of characteristic protons on 

–CHO at 9.90–9.94 ppm and benzene near the amino group at 6.55–6.63 ppm to that of 

characteristic protons on –CH2– at 4.11–4.26 ppm. Polymer notation: C = cyclic, the numbers 

1–4 indicate the cyclic times. 
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