5 research outputs found
Light-induced olefin metathesis
Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions
Highly stretchable ionically crosslinked acrylate elastomers based on polyelectrolyte complexes
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-based bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications
Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene
Differential scanning calorimetry (DSC) analysis of ring opening methatesis polymerization (ROMP) derived polydicyclopentadiene (PDCPD) revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon
Recommended from our members
Enabling Room-Temperature Mechanochromic Activation in a Glassy Polymer: Synthesis and Characterization of Spiropyran Polycarbonate.
Mechanochromic functionality realized through force-responsive molecules (i.e., mechanophores) has great potential for spatially localized damage warning in polymers. However, in structural plastics, for which damage warning is most critical, this approach has had minimal success because brittle failure typically precedes detectable color change. Herein, we report on the room-temperature mechanochromic activation of spiropyran in high Tg bisphenol A polycarbonate. The mechanochromic functionality was introduced by polymerization of dihydroxyspiropyran as a comonomer while retaining the excellent thermomechanical properties of the polycarbonate. The mechanochromic behavior is thoroughly evaluated in response to changes in stress, deformation, and time, providing new insights regarding how loading history controls stress accumulation in polymer chains. In addition, a new method to incorporate mechanochromic functionality in structures without dispersing costly mechanophores in the bulk is demonstrated by using a mechanochromic laminate. The room-temperature mechanochromic activation in a structural polymer combined with the new and efficient preparation and processing methods bring us closer to the application of mechanochromic smart materials