11 research outputs found

    Plasma-Devised Pt/C Model Electrodes for Understanding the Doubly Beneficial Roles of a Nanoneedle-Carbon Morphology and Strong Pt-Carbon Interface in the Oxygen Reduction Reaction

    Get PDF
    The doubly beneficial contribution of a nanoscale fabricated carbon surface and devised strong Pt-carbon interface to remarkable improvements of Pt/carbon fuel cell electrodes was evidenced to be a crucial clue for rational design of next-generation less-Pt/C electrodes. Real-world carbon surface morphology and metal-carbon interfaces are complex and interrelated and hard to control at a statistical level. Herein, we fabricated plasma-devised nanoneedles-glassy carbon (GC) from well-defined flat GC as model supports, on which Pt nanoparticles were anchored by arc plasma. The arc plasma deposited (APD)-Pt/flat-GC with a strong metal-support interface exhibited enhanced activity for the electrochemical oxygen reduction reaction (ORR) compared to chemically supported Pt/flat-GC and commercial Pt/C electrodes. The APD-Pt/nanoneedles-GC further promoted the ORR and showed a remarkable durability without significant deactivation after accelerated durability test cycles. The structural defects and compressive strain of Pt nanoparticles were induced by the plasma-devised metal-support contact, which may benefit the ORR activity of APD-Pt/nanoneedles-GC. The nanoneedles-GC support morphology may also improve oxygen gas transport at the nanoscale through modifying the hydrophobicity/hydrophilicity of the GC surface. These results on the devised Pt/C model electrodes reveal the highly enhanced activity and durability of the APD-Pt/nanoneedles-GC electrode by the doubly beneficial effects of a support nanoscale morphology and strong metal-support interface, which were characterized by the intimate combination of Pt/GC synthesis, electrochemical measurements, in situ XAFS, and HAADF-STEM. Our experimental findings provide necessary clues for the design and synthesis of active and durable fuel cell electrodes, metal-air batteries, and catalytic materials

    Malignant Mixed Tumor of Salivary Gland in a Dog

    No full text

    Characterization of GaN based Schottky UV detectors in the vacuum UV (VUV) and the soft X-ray (SX) region (10-100 nm)

    No full text
    Responsivity spectra of GaN based Schottky type ultraviolet (UV) photodetectors with transparent electrode from the Vacuum Ultraviolet (VUV) region to soft X-ray (SX) region (10-100 nm, 124-12.4 eV) are described for the first time. The calculated transmittance of 10 nm-thick transparent Ni/Au electrode from the transmittance of Ti/Au membrane is about 0.5-0.7 in the VUV and SX region (10-100 eV). Thus it is considered that the 10-nm-transparent Ni/Au electrode is thin enough to transmit VUV and SX light into the transparent electrode. The value of responsivity in the SX region (at 13 nm) is about 0.05 A/W

    Edoxaban Exerts Antioxidant Effects Through FXa Inhibition and Direct Radical-Scavenging Activity

    No full text
    The interplay between oxidative stress, inflammation, and tissue fibrosis leads to the progression of chronic kidney disease (CKD). Edoxaban, an activated blood coagulation factor Xa (FXa) inhibitor, ameliorates kidney disease by suppressing inflammation and tissue fibrosis in animal models. Interestingly, rivaroxaban, another FXa inhibitor, suppresses oxidative stress induced by FXa. Thus, FXa inhibitors could be multitargeted drugs for the three aforementioned risk factors for the progression of CKD. However, the exact mechanism responsible for eliciting the antioxidant effect of FXa inhibitors remains unclear. In this study, the antioxidant effect of edoxaban was evaluated. First, the intracellular antioxidant properties of edoxaban were evaluated using human proximal tubular cells (HK-2 cells). Next, direct radical scavenging activity was measured using the electron spin resonance and fluorescence analysis methods. Results show that edoxaban exhibited antioxidant effects on oxidative stress induced by FXa, indoxyl sulfate, and angiotensin II in HK-2 cells, as well as the FXa inhibitory activity, was involved in part of the antioxidant mechanism. Moreover, edoxaban exerted its antioxidative effect through its structure-specific direct radical scavenging activity. Edoxaban exerts antioxidant effects by inhibiting FXa and through direct radical-scavenging activity, and thus, may serve as multitargeted drugs for the three primary risk factors associated with progression of CKD
    corecore