107 research outputs found

    Anti-Allergic Activity of Monoacylated Ascorbic Acid 2-Glucosides

    Get PDF
    2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is one of the stable ascorbic acid (AA) derivatives known as provitamin C agents. We have previously synthesized two types of monoacylated derivatives of AA-2G, 6-O-acyl-2-O-α-D-glucopyranosyl-L-ascorbic acids having a straight-acyl chain of varying length from C4 to C18 (6-sAcyl-AA-2G) and a branched-acyl chain of varying length from C6 to C16 (6-bAcyl-AA-2G) in order to improve the bioavailability of AA-2G. In this study, 6-sAcyl-AA-2G and 6-bAcyl-AA-2G per se showed the inhibitory effects on hyaluronidase activity and degranulation. 6-sAcyl-AA-2G exhibited strong inhibitory effects on hyaluronidase activity and degranulation in a concentration-dependent manner, and the inhibitory effects tended to become stronger with increasing length of the acyl chain. 2-O-α-D-Glucopyranosyl-6-O-hexadecanoyl-L-ascorbic acid (6-sPalm-AA-2G), which has a straight C16 acyl chain, was the most potent effective for inhibition of hyaluronidase activity and for inhibition of degranulation among the 6-sAcyl-AA-2G derivatives and the two isomers of 6-sPalm-AA-2G. Furthermore, percutaneous administration of 6-sPalm-AA-2G significantly inhibited IgE-mediated passive cutaneous anaphylaxis reaction in mice. These findings suggest that 6-sPalm-AA-2G will be useful for treatment of allergies

    Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities

    Get PDF
    Bioassay-guided purification from the seeds of Peganum harmala led to the isolation of harmine (1), harmaline (2), vasicinone (3), and deoxyvasicinone (4). Harmine (1) and harmaline (2) showed a moderate in vitro antiplasmodial activity against Plasmodium falciparum. Quinazoline alkaloid, vasicinone (3), showed a vasorelaxant activity against phenylephrine-induced contraction of isolated rat aorta

    Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals

    Get PDF
    Objectives To evaluate the accuracy of robotic CT-guided out-of-plane needle insertion in phantom and animal experiments. Methods A robotic system (Zerobot), developed at our institution, was used for needle insertion. In the phantom experiment, 12 robotic needle insertions into a phantom at various angles in the XY and YZ planes were performed, and the same insertions were manually performed freehand, as well as guided by a smartphone application (SmartPuncture). Angle errors were compared between the robotic and smartphone-guided manual insertions using Student’s t test. In the animal experiment, 6 robotic out-of-plane needle insertions toward targets of 1.0 mm in diameter placed in the kidneys and hip muscles of swine were performed, each with and without adjustment of needle orientation based on reconstructed CT images during insertion. Distance accuracy was calculated as the distance between the needle tip and the target center. Results In the phantom experiment, the mean angle errors of the robotic, freehand manual, and smartphone-guided manual insertions were 0.4°, 7.0°, and 3.7° in the XY plane and 0.6°, 6.3°, and 0.6° in the YZ plane, respectively. Robotic insertions in the XY plane were significantly (p Conclusion Robotic CT-guided out-of-plane needle insertions were more accurate than smartphone-guided manual insertions in the phantom and were also accurate in the in vivo procedure, particularly with adjustment during insertion

    Novel Targeting to XCR1+ Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes

    Get PDF
    Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals

    High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node

    Get PDF
    While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.Simmons S., Sasaki N., Umemoto E., et al. High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node. eLife 8, e41239 (2019); https://doi.org/10.7554/eLife.41239

    Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant

    Get PDF
    SARS-CoV-2オミクロンBA.2.75株(通称ケンタウロス)のウイルス学的性状の解明. 京都大学プレスリリース. 2022-10-12.The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5
    corecore