2,380 research outputs found

    Precise determination of muon and electromagnetic shower contents from shower universality property

    Full text link
    We consider two new aspects of Extensive Air Shower development universality allowing to make accurate estimation of muon and electromagnetic (EM) shower contents in two independent ways. In the first case, to get muon (or EM) signal in water Cherenkov tanks or in scintillator detectors it is enough to know the vertical depth of shower maximum and the total signal in the ground detector. In the second case, the EM signal can be calculated from the primary particle energy and the zenith angle. In both cases the parametrizations of muon and EM signals are almost independent on primary particle nature, energy and zenith angle. Implications of the considered properties for mass composition and hadronic interaction studies are briefly discussed. The present study is performed on 28000 of proton, oxygen and iron showers, generated with CORSIKA 6.735 for E−1E^{-1} spectrum in the energy range log(E/eV)=18.5-20.0 and uniformly distributed in cos^2(theta) in zenith angle interval theta=0-65 degrees for QGSJET II/Fluka interaction models.Comment: Submitted to Phys. Rev.

    Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    Full text link
    For the first time a proper comparison of the average depth of shower maximum (XmaxX_{\rm max}) published by the Pierre Auger and Telescope Array Observatories is presented. The XmaxX_{\rm max} distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of ⟨Xmax⟩\langle X_{\rm max} \rangle with energy of both data sets. The ⟨Xmax⟩\langle X_{\rm max} \rangle measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9±2.7  (stat.)±18  (syst.)) g/cm2(2.9 \pm 2.7\;(\text{stat.}) \pm 18\;(\text{syst.}))~\text{g/cm}^2.Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA, 201

    MODERN TECHNOLOGIES OF THE PRESERVATION OF ORGANS

    Get PDF

    The analog signal processing board for the HEAT telescopes

    Get PDF
    Abstract The aim of the Pierre Auger Observatory is to measure with high statistics the flux, the arrival directions and the mass composition of cosmic rays at the highest energies. Since 2009, the Auger Collaboration has added three new High Elevation Auger Telescopes (HEAT) along with a new 25 km 2 infill array in the field of view of the new telescopes. These enhancements have lowered the energy threshold of the Observatory by about an order of magnitude. In combination with the existing telescopes in Coihueco the vertical field of view is extended to about 60°, allowing the measurement of nearby air showers arising from primaries with energies as low as 2×10 17 eV. In this paper we describe the new front-end analog board developed to process the signals generated by the photomultipliers of the HEAT telescopes. Eighty analog boards have been produced, fully characterized and tested. The main characteristics of the electronic circuits and the circuit parameters are illustrated

    Synthesis of S-containing derivatives of the sesquiterpene lactone Britanin

    Get PDF
    The optimal method for isolating the sesquiterpene lactone britanin from the aerial part of Inula britannica L. (Asteraceae) was developed. Britanin was functionalized by reacting it with methyl mercaptoacetate. ©2005 Springer Science+Business Media, Inc

    Application of the Institution of Exclusive Rights in the Field of Science

    Get PDF
    The problem of legal protection of scientific research results is of growing interest nowadays. However, none of the three hitherto existing rights (the right for trade secrets, patent and copyright) is able to fully take into account the characteristics of scientific activities. In Russia, the problem of legal protection of scientific research results has been developed actively since the 50-ies of the last century, in connection with the introduction of the system of state registration of scientific discoveries. A further concept allowed for not only the registration of discoveries, but also the entire array of scientific results. However, theoretical applicability of exclusive rights institutions in the sphere of science remained unstudied. The article describes a new system, which is not fixed in legislation and remains unnoticed by the vast majority of researchers. That is the institution of scientific and positional rights, focused on the recognition procedure of authorship, priority, and other characteristics of intellectual scientific results value. In case of complex intellectual results, comprising scientific results, the recognition of result-oriented exclusive rights proves to be unsustainable. This circumstance urges us to foreground the institution of scientific and positional exclusive rights. Its scope is budget science where non-fee published scientific results are generated. Any exclusive right to use open scientific results is out of the question. The sphere of open (budget) science is dominated by scientific and positional exclusive rights, sanctioned both by the state (S-sanctioned), the bodies of the scientific community (BSC-sanctioned) and scientific community (SC-sanctioned) rights

    On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements

    Full text link
    For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range Eμ=1−3⋅105E_\mu=1-3\cdot10^5 GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies >40>40 GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed
    • …
    corecore