11 research outputs found

    Using Laser Point Scanning Thermography for Quality Monitoring of Products Made of Composite Materials

    Get PDF
    Introduction. Control of the presence of subsurface defects in products from composite materials is necessary for verification of products after release from production and in the process of operation. Aim of the Study. The purpose of the presented work is to estimate the parameters of subsurface defects using local laser thermography, suitable for quality control of both small objects and suspicious areas of large objects with curved surfaces. Materials and Methods. The laboratory setup on which this work was carried out includes a robotic arm, a COX CG640 thermal imager and a 3 W laser. The method was tested on a fiberglass sample with introduced delamination defect simulations located at different depths below the surface. By means of computer modeling rational parameters of thermographic control were selected, providing reliable detection of the defect at a depth of up to 3 mm under the surface of the composite sample. Results. Numerical modeling of surface temperature field induced by moving focused laser beam was carried out using COMSOL software package. It showed that laser beam with 3 W power moving at 5 mm/s provided the thermal contrast sufficient to detect the defects at the depth up to 3 mm. The obtained experimental data are in satisfactory agreement with numerical modeling both qualitatively and quantitatively. Experimental data were used to construct a regression model for determining defect depth based on the maximal thermal contrast and the time interval between heating and the contrast maximum. Discussion and Conclusion. The results obtained in this work allow us to propose a technique for detecting defects in fiberglass plastics and estimating their depth. The coefficient of determination for the obtained regression model was found to be equal to 0.95, and the mean square error of the metric was no more than 0.016 mm2. The use of a robotic arm to scan objects will make it possible to investigate objects with complex curved surfaces

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Synthesis, Structure, and Properties of EuLnCuSe<sub>3</sub> (Ln = Nd, Sm, Gd, Er)

    No full text
    EuLnCuSe3 (Ln = Nd, Sm, Gd, Er), due to their complex composition, should be considered new materials with the ability to purposefully change the properties. Samples of the EuLnCuSe3 were prepared using Cu, rare earth metal, Se (99.99%) by the ampoule method. The samples were obtained by the crystallization from a melt and annealed at temperatures 1073 and 1273 K. The EuErCuSe3 crystal structure was established using the single-crystal particle. EuErCuSe3 crystallizes in the orthorhombic system, space group Cmcm, KCuZrS3 structure type, with cell parameters a = 4.0555 (3), b = 13.3570 (9), and c = 10.4602 (7) Å, V = 566.62 (6) Å3. In structure EuErCuSe3, erbium ions are coordinated by selenium ions in the octahedral polyhedron, copper ions are in the tetrahedral coordination, europium ions are between copper and erbium polyhedra layers and are coordinated by selenium ions as two-cap trigonal prisms. The optical band gap is 1.79 eV. At 4.7 K, a transition from the ferrimagnetic state to the paramagnetic state was detected in EuErCuSe3. At 85 and 293 K, the compound is in a paramagnetic state. According to XRPD data, EuLnCuSe3 (Ln = Nd, Sm, Gd) compounds have a Pnma orthorhombic space group of the Eu2CuS3 structure type. For EuSmCuSe3, a = 10.75704 (15) Å, b = 4.11120 (5) Å, c = 13.37778 (22) Å. In the series of EuLnCuSe3 compounds, the optical band gap increases 1.58 eV (Nd), 1.58 eV (Sm), 1.72 eV (Gd), 1.79 eV (Er), the microhardness of the 205 (Nd), 210 (Sm), 225 (Gd) 235 ± 4 HV (Er) phases increases, and the thermal stability of the phases increases significantly. According to the measurement data of differential scanning calorimetry, the EuNdCuSe3 decomposes, according to the solid-phase reaction T = 1296 K, ΔH = 8.2 ± 0.8 kJ/mol. EuSmCuSe3 melts incongruently T = 1449 K, ΔH = 18.8 ± 1.9 kJ/mol. For the EuGdCuSe3, two (Tα↔β = 1494 K, ΔHα↔β = 14.8 kJ/mol, Tβ↔γ = 1530 K, ΔHβ↔γ = 4.8 kJ/mol) and for EuErCuSe3 three polymorphic transitions (Tα↔β = 1561 K, ΔHα↔β = 30.3 kJ/mol, Tβ↔γ = 1579 K, ΔHβ↔γ = 4.4 kJ/mol, and Tγ↔δ = 1600 K, ΔHγ↔δ = 10.1 kJ/mol). The compounds melt incongruently at the temperature of 1588 K, ΔHmelt = 17.9 ± 1.8 kJ/mol and 1664 K, ΔHmelt = 25.6 ± 2.5 kJ/mol, respectively. Incongruent melting of the phases proceeds with the formation of a solid solution of EuSe and a liquid phase

    Differences in spatial versus temporal reaction norms for spring and autumn phenological events

    Get PDF
    For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn
    corecore