12 research outputs found

    11β-hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in apoe<sup>-/-</sup> mice

    Get PDF
    Mineralocorticoid receptor (MR) activation is pro inflammatory and pro atherogenic. Antagonism of MR improves survival in humans with congestive heart failure caused by atherosclerotic disease. In animal models, activation of MR exacerbates atherosclerosis. The enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) prevents inappropriate activation of the mineralocorticoid receptor (MR) from inappropriate activation by glucocorticoids by inactivating glucocorticoids in mineralocorticoid-target tissues. To determine whether glucocorticoid-mediated activation of MR increases atheromatous plaque formation we generated Apoe(−/−)/11β-HSD2(−/−) double-knockout (E/b2) mice. On chow diet, E/b2 mice developed atherosclerotic lesions by 3 months of age, while Apoe(−/−) mice remained lesion-free. Brachiocephalic plaques in 3 month-old E/b2 mice showed increased macrophage and lipid content and reduced collagen content compared to similar sized brachiocephalic plaques in 6 month old Apoe(−/−) mice. Crucially, treatment of E/b2 mice with eplerenone, an MR antagonist, reduced plaque development and macrophage infiltration while increasing collagen and smooth muscle cell content without any effect on systolic blood pressure (SBP). In contrast, reduction of SBP in E/b2 mice using the epithelial sodium channel (ENaC) blocker amiloride produced a less profound atheroprotective effect. Vascular cell adhesion molecule 1 (VCAM-1) expression was increased in the endothelium of E/b2 mice compared to Apoe(−/−) mice. Similarly, aldosterone increased VCAM-1 expression in mouse aortic endothelial cells, an effect mimicked by corticosterone only in the presence of an 11β-HSD2 inhibitor. Thus, loss of 11β-HSD2 leads to striking atherogenesis associated with activation of MR stimulating pro-inflammatory processes in the endothelium of E/b2 mice

    Skeletal muscle as an endocrine organ: Role of [Na+]i/[K+]i-mediated excitation-transcription coupling

    Get PDF
    AbstractDuring the last two decades numerous research teams demonstrated that skeletal muscles function as an exercise-dependent endocrine organ secreting dozens of myokines. Variety of physiological and pathophysiological implications of skeletal muscle myokines secretion has been described; however, upstream signals and sensing mechanisms underlying this phenomenon remain poorly understood. It is well documented that in skeletal muscles intensive exercise triggers dissipation of transmembrane gradient of monovalent cations caused by permanent activation of voltage-gated Na+ and K+ channels. Recently, we demonstrated that sustained elevation of the [Na+]i/[K+]i ratio triggers expression of dozens ubiquitous genes including several canonical myokines, such as interleukin-6 and cyclooxygenase 2, in the presence of intra- and extracellular Ca2+ chelators. These data allowed us to suggest a novel [Na+]i/[K+]i-sensitive, Ca2+i-independent mechanism of excitation-transcription coupling which triggers myokine production. This pathway exists in parallel with canonical signaling mediated by Ca2+i, AMP-activated protein kinase and hypoxia-inducible factor 1α (HIF-1α). In our mini-review we briefly summarize data supporting this hypothesis as well as unresolved issues aiming to forthcoming studies

    Skeletal muscle as an endocrine organ: Role of [Na+]i/[K+]i-mediated excitation-transcription coupling

    No full text
    During the last two decades numerous research teams demonstrated that skeletal muscles function as an exercise-dependent endocrine organ secreting dozens of myokines. Variety of physiological and pathophysiological implications of skeletal muscle myokines secretion has been described; however, upstream signals and sensing mechanisms underlying this phenomenon remain poorly understood. It is well documented that in skeletal muscles intensive exercise triggers dissipation of transmembrane gradient of monovalent cations caused by permanent activation of voltage-gated Na+ and K+ channels. Recently, we demonstrated that sustained elevation of the [Na+]i/[K+]i ratio triggers expression of dozens ubiquitous genes including several canonical myokines, such as interleukin-6 and cyclooxygenase 2, in the presence of intra- and extracellular Ca2+ chelators. These data allowed us to suggest a novel [Na+]i/[K+]i-sensitive, Ca2+i-independent mechanism of excitation-transcription coupling which triggers myokine production. This pathway exists in parallel with canonical signaling mediated by Ca2+i, AMP-activated protein kinase and hypoxia-inducible factor 1α (HIF-1α). In our mini-review we briefly summarize data supporting this hypothesis as well as unresolved issues aiming to forthcoming studies

    4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing

    No full text
    4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors

    4-methylumbelliferone Prevents Liver Fibrosis by Affecting Hyaluronan Deposition, FSTL1 Expression and Cell Localization

    No full text
    4-methylumbelliferone (4MU) is an inhibitor of hyaluronan deposition and an active substance of hymecromone, a choleretic and antispasmodic drug. 4MU reported to be anti-fibrotic in mouse models; however, precise mechanism of action still requires further investigation. Here we describe the cellular and molecular mechanisms of 4MU action on CCl4-induced liver fibrosis in mice using NGS transcriptome, Q-PCR and immunohistochemical analysis. Collagen and hyaluronan deposition were prevented by 4MU. The CCl4 stimulated expression of Col1a and &alpha;SMA were reduced, while the expression of the ECM catabolic gene Hyal1 was increased in the presence of 4MU. Bioinformatic analysis identified an activation of TGF-beta and Wnt/beta-catenin signaling pathways, and inhibition of the genes associated with lipid metabolism by CCL4 treatment, while 4MU restored key markers of these pathways to the control level. Immunohistochemical analysis reveals the suppression of hepatic stellate cells (HSCs) transdifferentiation to myofibroblasts by 4MU treatment. The drug affected the localization of HSCs and macrophages in the sites of fibrogenesis. CCl4 treatment induced the expression of FSTL1, which was downregulated by 4MU. Our results support the hypothesis that 4MU alleviates CCl4-induced liver fibrosis by reducing hyaluronan deposition and downregulating FSTL1 expression, accompanied by the suppression of HSC trans-differentiation and altered macrophage localization

    4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing

    No full text
    4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors
    corecore