2,240 research outputs found
Macrophage Migration Inhibitory Factor in Protozoan Infections
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation
The case study of Israel and Portugal
This work was supported by the Israel Ministry of Science and Technology Israel-Portugal collaboration grant (3–1650).
Funding Information:
The authors are grateful to Maxim Rubin-Blum and Mali Salmon-Divon for scientific advice. The authors thank “ecoocean” non-profit organization for providing the Israeli research vessel and the crew. The authors acknowledge the collaboration of the Institute for Nature and Forests Conservancy (ICNF), in particular Ana Sofia Palma and the Nature Wardens, Carlos Silva known as “Lobo do Mar,” Inês Nobre and André Silveira for operating the boat and helping to collect samples in Sado. The authors express gratitude to the MARLab team of the NOVA School of Science and Technology, especially Andreia Guilherme, João Pequeno, and other volunteers who helped in field work, and also thank Isabel Menezes from the Portuguese Institute for the Ocean and Atmosphere (IPMA), for granting access to the Folsom splitter.
Publisher Copyright:
Copyright © 2023 Marsay, Ambrosino, Koucherov, Davidov, Figueiredo, Yakovenko, Itzahri, Martins, Sobral and Oren.Introduction: Floating microplastic debris are found in most marine environments around the world. Due to their low density and high durability, plastic polymers such as polyethylene, polypropylene, and polystyrene serve as stable floating substrates for the colonization of diverse communities of marine organisms. Despite the high abundance of microplastic debris in the oceans, it is not clear how the geographical location and season affect the composition of marine microplastic and its bacterial microbiome in the natural environment. Methods: To address this question, microplastic debris were collected from the sea surface near estuaries in the Mediterranean Sea (Israel) and in the Atlantic Ocean (Portugal) during summer and winter of 2021. The microplastic physical characteristics, including shape, color, and polymer composition, were analyzed and the taxonomic structure of the microplastic bacterial microbiome was characterized using a high-resolution metabarcoding pipeline. Results: Our results, supported by previously published data, suggest that the plastisphere is a highly diverse ecosystem which is strongly shaped by spatial and temporal environmental factors. The geographical location had the highest impact on the plastisphere physical characteristics and its microbiome composition, followed by the season. Our metabarcoding analysis showed great variability between the different marine environments with a very limited microbiome “core.” Discussion: This notion further emphasizes the importance of plastisphere studies in different geographical locations and/or seasons for the characterization of the plastisphere and the identification of plastic-associated species.publishersversionpublishe
On the behaviour of spin-orbit connection of exoplanets
Star-planet interactions play, among other things, a crucial role in
planetary orbital configurations by circularizing orbits, aligning the star and
planet spin and synchronizing stellar rotation with orbital motions. This is
especially true for innermost giant planets, which can be schematized as binary
systems with a very large mass ratio. Despite a few examples where spin-orbit
synchronization has been obtained, there is no demographic study on synchronous
regimes in those systems yet. Here we use a sample of 1,055 stars with
innermost planet companions to show the existence of three observational loci
of star-planet synchronization regimes. Two of them have dominant fractions of
subsynchronous and supersynchronous star-planet systems, and a third less
populated regime of potentially synchronized systems. No synchronous
star-planet system with a period higher than 40 days has been detected yet.
This landscape is different from eclipsing binary systems, most of which are
synchronized. We suggest that planets in a stable asynchronous spin state
belonging to star-planet systems in a supersynchronized regime offer the most
favourable conditions for habitability.Comment: 15 pages, 1 figure in main paper, 6 supplementary figures. Published
in Nature Astronomy, May 202
The economic impact of machine perfusion technology in liver transplantation
Introduction: Several clinical studies have demonstrated the safety, feasibility, and efficacy of machine perfusion in liver transplantation, although its economic outcomes are still underexplored. This review aimed to examine the costs related to machine perfusion and its associated outcomes.Methods: Expert opinion of several groups representing different machine perfusion modalities. Critical analysis of the published literature reporting the economic outcomes of the most used techniques of machine perfusion in liver transplantation (normothermic and hypothermic ex situ machine perfusion and in situ normothermic regional perfusion).Results: Machine perfusion costs include disposable components of the perfusion device, perfusate components, personnel and facility fees, and depreciation of the perfusion device or device lease fee. The limited current literature suggests that although this upfront cost varies between perfusion modalities, its use is highly likely to be cost-effective. Optimization of the donor liver utilization rate, local conditions of transplant programs (long waiting list times and higher MELD scores), a decreased rate of complications, changes in logistics, and length of hospital stay are potential cost savings points that must highlight the expected benefits of this intervention. An additional unaccounted factor is that machine perfusion optimizing donor organ utilization allows patients to be transplanted earlier, avoiding clinical deterioration while on the waiting list and the costs associated with hospital admissions and other required procedures.Conclusion: So far, the clinical benefits have guided machine perfusion implementation in liver transplantation. Albeit there is data suggesting the economic benefit of the technique, further investigation of its costs to healthcare systems and society and associated outcomes is needed.</p
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium berghei </it>ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.</p> <p>Methods</p> <p>Seventy-eight <it>P. berghei</it>-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.</p> <p>Results</p> <p>The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (<sub>au</sub>ROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (<sub>au</sub>ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.</p> <p>Conclusion</p> <p>These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.</p
- …