5 research outputs found

    Re-Os Systematics in the Layered Rocks and Cu-Ni-PGE Sulfide Ores from the Dovyren Intrusive Complex in Southern Siberia, Russia: Implications for the Original Mantle Source and the Effects of Two-Stage Crustal Contamination

    No full text
    The Dovyren Intrusive Complex (Northern Baikal region, 728 ± 3 Ma) includes the dunite–troctolite–gabbronorite Yoko–Dovyren massif (YDM) associated with a sequence of underlying mafic-to-ultramafic sills, locally demonstrating interbedding relations with the most primitive rocks of the pluton. These sills and apophyses contain sulfide mineralization ranging from globular to net-textured and massive ores. Major types of the YDM cumulates and sulfide mineralization were examined for their PGE contents and Re-Os isotopic systematics. The ten analyzed samples included chilled and basal rocks, poorly mineralized troctolite, PGE-rich anorthosite, as well as three samples from a thick ore-bearing apophysis DV10 connected with the YDM. These samples yielded a Re-Os isochron with an age of 759 ± 36 Ma and an initial 187Os/188Os of 0.1309 ± 0.0026 (MSWD = 110), which is in consistent with the previously reported U–Pb zircon age. It is shown that being recalculated to γOs(t) at t = 728 Ma, these isotopic compositions demonstrate three clusters regarding the relationship between γOs(t) and 187Re/188Os: (i) the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) yielded the most radiogenic values of γOs(t) 10.5 and 10.0 among basal ultramafics, (ii) plagiodunite, troctolite, and sulfide ores showed lower radiogenic compositions, with γOs(t) ranging from 7.3 to 8.7, (iii) olivine gabbronorite, plagioperidotite, and one sample of PGE-rich anorthosite yield very primitive γOs(t) in the range 4.5 to 5.6 (on average 5.2 ± 0.6). The lowest values of γOs(t) for the least fractionated rocks of the YDM suggest a primitive mantle source, formed from a partly contaminated Neoarchean protolith, which is considered to be anomalous in Upper Riphean due to very low εNd(t) of −16 for the most primitive Dovyren magma (Fo88-parent). The highest values of γOs(t) and relative enrichment in the 34S isotope in the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) evidence that their primitive to evolved magmatic precursors could be affected by a metamorphic fluid enriched in radiogenic 187Os, originating in the exocontact halo due to the thermal decomposition of pyrite from the dehydrated country rocks. This is consistent with the second-stage contamination of the Dovyren magma by the hosting crustal rocks (probably of 10 wt% shists), generating more evolved Fo86-parent magma with higher εNd(t) of −14

    Petrogenesis of the Snezhnoe Ruby Deposit, Central Pamir

    No full text
    The Snezhnoe ruby deposit is located in the Muzkol–Rangkul anticlinorium within the Cimmerian zone of the Central Pamir. On the local scale, the deposit occurs on discrete relict bedding planes of calcitic marbles belonging to the Sarydzhilgin suite. Four ruby-bearing mineral assemblages are present within the main parts of the deposit: (1) scapolite + phlogopite + muscovite + margarite; (2) plagioclase + muscovite + margarite; (3) muscovite + phlogopite + margarite; (4) calcite. The ruby + calcite association is the most economically important, whereas the association of plagioclase + scapolite + phlogopite + muscovite is typical for the ruby-free parts of the deposit. Mica group minerals with a distinctive green color due to enhanced Cr and V concentrations are the main prospecting indicators for the ruby mineralization. The oxygen isotopic composition of the rubies is +15.3‰, a common value for crustal metamorphic and sedimentary rocks. The ratios of indicative trace elements in the rubies are Ga/Mg < 8.2, Fe/Mg < 51.2, Cr/Ga > 6.9 and Fe/Ti < 31.6. These values are characteristic for metamorphic corundum. The bulk ruby-bearing rocks have an initial 87Sr/86Sr ratio of ~0.70791 and εNd of ~−9.6, also pointing to the crustal origin of the deposit in agreement with the geological data. Ancient Al-enriched sediments are suggested to be a possible protolith for the ruby-bearing rocks. The temperature of the metamorphic processes was estimated at 760 ± 30 °C using Zr-in-rutile geothermometry. Raman mapping of rutile inclusions trapped within the ruby crystal indicates that the minimum pressure of mineralization was about one kilobar. The age determined by the Rb–Sr thermal ionization mass spectrometry of phlogopite, plagioclase and bulk rock is 23 ± 1.6 Ma, corresponding to the timing of relaxation after peak metamorphism during the Alpine–Himalayan Orogeny

    Removing a mask of alteration: Geochemistry and age of the Karadag volcanic sequence in SE Crimea

    No full text
    The Karadag Massif in south-eastern Crimea hosts a thick sequence of volcanic rocks, which underwent significant secondary alteration. Here we deduce the effects of alteration, remove their mask and estimate the primary chemical composition and age of these volcanic rocks using their bulk chemical analyses, as well as chemical data from plagioclase, ortho- and clinopyroxene-hosted melt inclusions, and Ar isotope analyses of plagioclase and groundmass from the freshest andesite. Our data reveal two distinct magmatic series in the Karadag Massif. The first defines a subalkaline, calcic, medium-K series with high enrichment in LILE, U, Th and LREE relative to HREE, Y, Zr, Hf, Nb and Ta, which is typical of supra-subduction volcanic rocks. According to previously published trace element data, most of the Karadag volcanic rocks belong to this series. We use Ar isotope data to argue that the age of these rocks is 172.8 ± 4.5 Ma, which is consistent with the biostratigraphy. No reliable major-element chemical data and no isotopic data were obtained from the second series, although its trace-element signature is similar to that of some Nb-enriched supra-subduction volcanic rocks. It is characterised by less pronounced enrichment in LILE, U, Th and LREE relative to HREE, Y, Zr, Hf, Nb and Ta, and relatively high contents of Nb and Ta. Typical supra-subduction series of the Karadag Massif is similar to other pre-Cretaceous magmatic rocks exposed in Crimea, and hence likely formed in a similar environment. Literature data on Middle Jurassic magmatic rocks of the Pontides Belt in northern Turkey also allow to distinguish two magmatic series, which closely correspond to the magmatic rocks in Crimea. This is consistent with palaeotectonic reconstructions which suggest that the Pontides Belt was joined to Crimea prior to the opening of the Black Sea, and they formed a single volcanic arc
    corecore