27 research outputs found

    Increase in Arctic Oscillations explains most interannual variability in Russia’s wildfires

    Get PDF
    Over the past two decades, the escalating emissions of greenhouse gases from boreal wildfires in the Northern Hemisphere have drawn significant attention, underscoring an unprecedented wildfire season in 2021. Our calculations indicate that between 2002 and 2020, wildfires in Russia released approximately 726 ± 280 Tg CO2eqv yr−1. This aligns closely with similar estimates derived from remote sensing data, far surpassing the earlier approximations found in the Russian National Inventory Report (NIR) by a factor of 2 to 3. Notably, in 2021 alone, Russia’s wildfires emitted an exceptionally high amount of 1,700 Tg CO2eqv, exceeding the carbon emissions from the country’s fossil fuel consumption. Consequently, this situation led to an almost complete counterbalance of carbon assimilation by Russian forests. Our analysis attributes over 50% of the variation in wildfire frequency between 2002 and 2021 to shifts in the Arctic Oscillation (AO). This suggests a potential for utilizing AO as a predictive variable for wildfires. It’s noteworthy that the AO itself is influenced by the sustained regression of Arctic sea-ice. From this, it can be inferred that in the foreseeable future, Russian forests might undergo a transition from their role as carbon sinks to the potential net contributors of carbon to the atmosphere

    Ocean stratification and sea-ice cover in Barents and Kara seas modulate sea-air methane flux: satellite data

    Get PDF
    The diverse range of mechanisms driving the Arctic amplification and global climate are not completely understood and, in particular, the role of the greenhouse gas methane (CH4) in the Arctic warming remains unclear. Strong sources of methane at the ocean seabed in the Barents Sea and other polar regions are well documented. Nevertheless, some of those publications suggest that negligible amounts of methane fluxed from the seabed enter the atmosphere, with roughly 90% of the methane consumed by bacteria. Most in situ observations are taken during summer, which is favorable for collecting data but also characterized by a stratified water column. We present perennial observations of three Thermal IR space-borne spectrometers in the Arctic between 2002 and 2020. According to estimates derived from the data synthesis ECCO (Estimating the Circulation and Climate of the Ocean), in the ice-free Barents Sea the stratification in winter weakens after the summer strong stability. The convection, storms, and turbulent diffusion mix the full-depth water column. CH4 excess over a control area in North Atlantic, measured by three sounders, and the oceanic Mixed Layer Depth (MLD) both maximize in winter. A significant seasonal increase of sea-air exchange in ice-free seas is assumed. The amplitude of the seasonal methane cycle for the Kara Sea significantly increased since the beginning of the century. This may be explained by a decline of ice concentration there. The annual CH4 emission from the Arctic seas is estimated as 2/3 of land emission. The Barents/Kara seas contribute between 1/3 and 1/2 into the Arctic seas annual emission

    Ideas and Perspectives: A Strategic Assessment of Methane and Nitrous Oxide Measurements In the Marine Environment

    Get PDF
    In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics-namely production, consumption, and net emissions-is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climateactive trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment

    Degradation of sea ice in the Western Arctic facilitates methane transport from sub-seabed sediments to atmosphere: satellite data for 2003 - 2019.

    No full text
    Проанализированы ИК спутниковые данные о концентрации метана в слое атмосферы 0-4 кмнад Карским и Баренцевым морями. Данные по метану сравнивались с микроволновымиспутниковыми измерениями ледового покрова Карского моря. Амплитуда сезонных вариацийметана над северной частью Карского моря выросла в 3 раза за последние 16 лет. Площадьповерхности того же района, свободная ото льда, выросла в 4 раза. Сделан вывод орешающей роли ледового покрова в экранировании потока метана в атмосферу
    corecore