103 research outputs found

    AN EMPIRICAL INVESTIGATION INTO THE EFFECT OF TECHNOSTRESS OF PHYSICIANS ON ADOPTION OF ELECTRONIC HEALTHCARE SYSTEMS

    Get PDF
    Information technology systems in healthcare have existed for several years and gained relatively widespread usage. Therefore, factors of IT adoption have largely been discussed in literatures in order to improve the efficiency and effectiveness of using systems. However, existing frameworks are failing to include an important aspect, the technostress undertaken by physicians. Our research idea is that IT adoption in a clinical environment depends on five different dimensions of technostress (e.g. work overload, techno-invasion and etc. al) of physicians through PU and PEOU based on TAM model. This paper first made comprehensive literature review to the content about technostress and different theories related to adoption, then put forward five hypotheses based on the TAM Model, which has been widely perceived by scholars. As for the model construction and data collection, the research intends to use a 5-point Likert scale and select physicians at different levels from 7 representative hospitals’ basic units located in Shaanxi province. Based on all above, we expect the research could offer a subtle theoretical understanding about the nature of technostress and their impact on adoption by physicians. On the practical front, the research has implications for managers intending to design managerial procedures or rules for the purpose of improving the adoption

    Extended imaginary gauge transformation in a general nonreciprocal lattice

    Full text link
    Imaginary gauge transformation (IGT) provides a clear understanding of the non-Hermitian skin effect by transforming the non-Hermitian Hamiltonians with real spectra into Hermitian ones. In this work, we extend this approach to the complex spectrum regime in a general nonreciprocal lattice model. We unveil the validity of IGT hinges on a class of pseudo-Hermitian symmetry. The generalized Brillouin zone of Hamiltonian respect such pseudo-Hermiticity is demonstrated to be a circle, which enables easy access to the continuum bands, localization length of skin modes, and relevant topological numbers. Furthermore, we investigate the applicability of IGT and the underlying pseudo-Hermiticity beyond nearest-neighbour hopping, offering a graphical interpretation. Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer Su-Schrieffer-Heeger model and analyze the localization behaviors of skin modes in the two-dimensional Hatano-Nelson model.Comment: 16 pages, 6 figure

    Research on complex wake interference of aligned rotors considering the precone variation of the upstream wind turbine

    Get PDF
    To understand the interaction wake effects of aligned horizontal-axis wind turbines, a refined and low-cost wake simulation framework is developed by combining the actuator line (AL) with a local dynamic Smagorinsky (LDS) model. Firstly, the published performance of the NREL-5MW wind turbine is used to corroborate the accuracy of the AL-LDS coupling model. Secondly, the research is extended to predict the interference between two tandem rotor wakes. The influence of the precone characteristics on the overall wake and power output of the tandem wind turbines is explored by modifying the upstream wind turbine and introducing the latest third-generation Ω vortex identification method in the post-processing procedure. According to results, the tandem wind turbines have complex wake interference, with the precone angle variation always reducing the global output power, and leading to an unstable downstream turbine wake. This is detrimental to system lifespan due to high performance fluctuation and stress and as well may have ecological implications due to sediment alteration. From results, an upwind turbine with precone angle (negative) can lead to higher downstream but lower upstream turbine performance, compared with a non-tilted turbine. Despite the optimal precone angle of the upstream wind turbine is 0°, a -2.5° proves more advantageous owing to the large flexible deformation of the turbine wingtips. The findings can serve as a continuous incentive for improving wind farm numerical simulation

    Flow structures in wake of a pile-supported horizontal axis tidal stream turbine

    Get PDF
    YesThis study presents results from laboratory experiments to investigate the wake structure in the lee side of a scaled three-bladed horizontal axis tidal stream turbine with a mono-pile support structure. Experiments are conducted for a range of approaching flow velocity and installation height of rotor. Analysis of the results shows that bed shear stress increases with the increase of approaching velocity and decrease of installation height within 2D (D is the diameter of the rotor) downstream of the rotor. The flow field within 2D downstream of the rotor is greatly influenced by the presence of nacelle and mono-pile. Low stream-wise flow velocity and large turbulence intensity level is detected along the flume center right behind the nacelle and mono-pile from 1D to 2D downstream of the rotor. Stream-wise velocity at the blade tip height lower than the nacelle increases sharply from 1D to 2D and gradually grows afterwards. Correspondingly, the turbulence intensity decreases quickly from 1D to 2D and slowly afterwards. Large bed shear stress is measured from 1D to 2D, which is closely related to turbulence induced by the mono-pile. It is also found that the presence of the mono-pile might make the flow field more ‘disc-shaped’.National Key Research and Development Program of China (No.2017YFC1404200), the Marine Renewable Energy Research Project of State Oceanic Administration (No.GHME2015GC01), the Fundamental Research Funds for the Central Universities of China (No.2017B696X14) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No.KYCX17_0448

    Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model

    Get PDF
    BACKGROUND: Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. METHODOLOGIES: We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. PRINCIPAL FINDINGS: We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm(3)) compared with vehicle group (238.63±19.69 mm(3), P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm(3)) compared with vehicle group (2914.17±780.52 mm(3), P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). CONCLUSIONS/SIGNIFICANCE: This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    A Convenient Way to Determine the Optimum Angle of Incidence of Fizeau Interferometer

    No full text
    In a Fizeau interferometer, off-axis illumination will lead to fringe optimization. Primarily due to the unique structure of our interferometer, we first analyze the influence of the optical properties of the parallel plate as a part of the interferometer on the optimal incident angle. Generally, the incident angle determination is mainly based on the graphing method proposed by Langenbeck and the estimation formula proposed by Kajava. However, Langenbeck’s method is cumbersome, and the error of Kajava’s estimation formula is large. Based on the predecessors, this paper proposes a modified method of determining the optimal angle of incidence and further derives more accurate optimal angle expressions than Kajava’s. By simply substituting the wedge angle of the wedge cavity and the reflectivity of the cavity, the optimum incidence angle can be obtained immediately. Thus, it eliminates the tedious and complex process of finding the optimum incident angle by graphing method and makes the formula method the simplest method to find the optimum incident angle. Finally, the comparison of the interference intensity at the optimum incidence angle calculated by the improved method and normal incidence is given. It is found that the beam has a good suppression effect on the sub-peak when it is incident at the optimum incident angle calculated by the method in this paper

    Use thermophysical property to quantify state of HIFU treatment for VLS

    No full text
    The aim of this study is to evaluate the performance of ADT methods in grading the effectiveness of HIFU treatment for VLS. High-intensity focused ultrasound has been identified as a promising treatment modality for vulvar lichen sclerosus, a common inflammatory disorder associated with an increased risk of developing vulvar carcinoma. With small probe on extensive VLS parts, the therapy was sometimes uneven, thus the total doses of HIFU machine couldn’t indicate the curative effect at each part. The current therapeutic effect was based on symptoms and skin appearance after 3 months, which was time-consuming. Until now, there has been no immediate quantitative assessment method of HIFU therapeutic response for VLS. In our study, active dynamic IR thermal (ADT) was scheduled to undergo HIFU therapy before and after treatment. The thermal time constant was calculated based on ADT images measured both before and after HIFU treatment. In the result of pig phantom measurements, with each part approximately the same thermal time constant before HIFU treatment, the change of thermal time constant was strictly positively associated with HIFU dose onto each part. This study demonstrates the clinical potential of ADT in fast and effective quantify state of HIFU treatment for VLS
    • …
    corecore