129 research outputs found

    Tip induced unconventional superconductivity on Weyl semimetal TaAs

    Full text link
    Weyl fermion is a massless Dirac fermion with definite chirality, which has been long pursued since 1929. Though it has not been observed as a fundamental particle in nature, Weyl fermion can be realized as low-energy excitation around Weyl point in Weyl semimetal, which possesses Weyl fermion cones in the bulk and nontrivial Fermi arc states on the surface. As a firstly discovered Weyl semimetal, TaAs crystal possesses 12 pairs of Weyl points in the momentum space, which are topologically protected against small perturbations. Here, we report for the first time the tip induced superconductivity on TaAs crystal by point contact spectroscopy. A conductance plateau and sharp double dips are observed in the point contact spectra, indicating p-wave like unconventional superconductivity. Furthermore, the zero bias conductance peak in low temperature regime is detected, suggesting potentially the existence of Majorana zero modes. The experimentally observed tunneling spectra can be interpreted with a novel mirror-symmetry protected topological superconductor induced in TaAs, which can exhibit zero bias and double finite bias peaks, and double conductance dips in the measurements. Our work can open a broad avenue in search for new topological superconducting phases from topological Weyl materials and trigger intensive investigations for pursuing Majorana fermions

    Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu₂S Electrodes for Lithium-Ion Batteries

    Get PDF
    Owing to their high specific capacity and abundant reserve, Cux_{x}S compounds are promising electrode materials for lithium-ion batteries (LIBs). Carbon compositing could stabilize the Cux_{x}S structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+^{+} storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2_{2}S was synthesized by CuS co-precipitation and thermal reduction with polyelectrolytes. High-temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2_{2}S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X-ray absorption spectroscopy. The N-doped carbon-composited Cu2_{2}S (Cu2_{2}S/C) exhibits an initial discharge capacity of 425 mAh g1^{-1} at 0.1 A g1^{-1}, with a higher, long-term capacity of 523 mAh g1^{-1} at 0.1 A g1^{-1} after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g1^{-1} after 200 cycles. Multiple-scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage

    Vibronic Fingerprint of Singlet Fission in Hexacene

    Get PDF
    Singlet fission has the great potential to overcome the Shockley–Queisser thermodynamic limit and thus promotes solar power conversion efficiency. However, the current limited understandings of detailed singlet fission mechanisms hinder a further improved design of versatile singlet fission materials. In the present study, we combined ultrafast transient infrared spectroscopy with ab initio calculations to elucidate the roles played by the vibrational normal modes in the process of singlet fission for hexacene. Our transient infrared experiments revealed three groups of vibrational modes that are prominent in vibronic coupling upon photoexcitation. Through our computational study, those normal modes with notable Franck-Condon shifts have been classified as ring-twisting modes near 1300.0 cm−1, ring-stretching modes near 1600.0 cm−1, and ring-scissoring modes near 1700.0 cm−1. Experimentally, a ring-stretching mode near 1620.0 cm−1 exhibits a significant blue-shift of 4.0 cm−1 during singlet fission, which reaction rate turns out to be 0.59 ± 0.07 ps. More interestingly, the blue-shifted mode was also identified by our functional mode singlet fission theory as the primary driving mode for singlet fission, suggesting the importance of vibronic coupling when a correlated triplet pair of hexacene is directly converted from its first excited state singlet exciton. Our findings indicate that the ultrafast transient infrared spectroscopy, in conjunction with the nonadiabatic transition theory, is a powerful tool to probe the vibronic fingerprint of singlet fission

    A first generation integrated map of the rainbow trout genome

    Get PDF
    Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) programs for improving rainbow trout aquaculture production. Results The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all 29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and BAC contigs with an average of 3,033 Kb/cM. Conclusions The integrated map described here provides a framework for a robust composite genome map for rainbow trout. This resource is needed for genomic analyses in this research model and economically important species and will facilitate comparative genome mapping with other salmonids and with model fish species. This resource will also facilitate efforts to assemble a whole-genome reference sequence for rainbow trout

    Identification and validation of IgG N-glycosylation biomarkers of esophageal carcinoma

    Get PDF
    Introduction: Altered Immunoglobulin G (IgG) N-glycosylation is associated with aging, inflammation, and diseases status, while its effect on esophageal squamous cell carcinoma (ESCC) remains unknown. As far as we know, this is the first study to explore and validate the association of IgG N-glycosylation and the carcinogenesis progression of ESCC, providing innovative biomarkers for the predictive identification and targeted prevention of ESCC. Methods: In total, 496 individuals of ESCC (n=114), precancerosis (n=187) and controls (n=195) from the discovery population (n=348) and validation population (n=148) were recruited in the study. IgG N-glycosylation profile was analyzed and an ESCC-related glycan score was composed by a stepwise ordinal logistic model in the discovery population. The receiver operating characteristic (ROC) curve with the bootstrapping procedure was used to assess the performance of the glycan score. Results: In the discovery population, the adjusted OR of GP20 (digalactosylated monosialylated biantennary with core and antennary fucose), IGP33 (the ratio of all fucosylated monosyalilated and disialylated structures), IGP44 (the proportion of high mannose glycan structures in total neutral IgG glycans), IGP58 (the percentage of all fucosylated structures in total neutral IgG glycans), IGP75 (the incidence of bisecting GlcNAc in all fucosylated digalactosylated structures in total neutral IgG glycans), and the glycan score are 4.03 (95% CI: 3.03-5.36, P \u3c 0.001), 0.69 (95% CI: 0.55-0.87, P \u3c 0.001), 0.56 (95% CI: 0.45-0.69, P \u3c 0.001), 0.52 (95% CI: 0.41-0.65, P \u3c 0.001), 7.17 (95% CI: 4.77-10.79, P \u3c 0.001), and 2.86 (95% CI: 2.33-3.53, P \u3c 0.001), respectively. Individuals in the highest tertile of the glycan score own an increased risk (OR: 11.41), compared with those in the lowest. The average multi-class AUC are 0.822 (95% CI: 0.786-0.849). Findings are verified in the validation population, with an average AUC of 0.807 (95% CI: 0.758-0.864). Discussion: Our study demonstrated that IgG N-glycans and the proposed glycan score appear to be promising predictive markers for ESCC, contributing to the early prevention of esophageal cancer. From the perspective of biological mechanism, IgG fucosylation and mannosylation might involve in the carcinogenesis progression of ESCC, and provide potential therapeutic targets for personalized interventions of cancer progression

    A first generation BAC-based physical map of the rainbow trout genome

    Get PDF
    Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species.[br/] Results: The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map.[br/] Conclusion: The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement
    corecore