124 research outputs found

    Aqua­(benzamidato-κN)bis­[3,5-difluoro-2-(pyridin-2-yl)phenyl-κC 1]iridium(III) methanol monosolvate

    Get PDF
    In the title compound, [Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH3OH, the IrIII ion adopts an octa­hedral geometry, and is coordinated by two 3,5-difluoro-2-(pyridin-2-yl)phenyl ligands, one mol­ecule of water and one benzamidate anion. The two 2-(4,6-difluoro­phen­yl)pyridyl ligands are arranged in a cis-C,C′ and trans-N,N′ fashion. Additionally, there is a bystanding methanol mol­ecule outside the coordination sphere of the IrIII ion. In the crystal, mol­ecules of the title compound are linked by O—H⋯O and O—H⋯N hydrogen bonds. One F atom of each ligand is equally disordered over two sites. The C atom of the solvent molecule is likewise disordered over two sites in a 0.589 (11):0.411 (11) ratio

    Aqua­[N-(1-naphth­yl)acetamido-κN]bis­[2-(2-pyrid­yl)phenyl-κ2 N,C 1]iridium(III) ethyl­ene glycol hemisolvate

    Get PDF
    In the title compound, [Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2, the iridium center is coordinated by two N atoms and two C atoms from two 2-(2-pyrid­yl)phenyl (ppy) ligands, one N atom from the N-(1-naphth­yl)acetamide ligand and one water O atom, forming a distorted octa­hedral environment. Mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds formed by the coordinated water mol­ecule and the amide O atom of the N-(1-naphth­yl)acetamide ligands

    (E)-N,N′-Bis(2,6-dimethyl­phen­yl)-N,N′-bis­(trichloro­silyl)ethyl­ene-1,2-diamine

    Get PDF
    The asymmetric unit of the title compound, C18H20Cl6N2Si2, contains one half of the centrosymmetric mol­ecule. The two benzene rings are perpendicular to the plane of Si–N–C=C–N–Si fragment, making a dihedral angle of 89.9 (1)°. The crystal packing exhibits short inter­molecular Cl⋯Cl contacts of 3.3119 (17) Å

    Holistic Strategies Lead to Enhanced Efficiency and Stability of Hybrid Chemical Vapor Deposition Based Perovskite Solar Cells and Modules

    Get PDF
    Hybrid chemical vapor deposition (HCVD) is a promising method for the up-scalable fabrication of perovskite solar cells/modules (PSCs/PSMs). However, the efficiency of the HCVD-based perovskite solar cells still lags behind the solution-processed PSCs/PSMs. In this work, the oxygen loss of the electron transport layer of SnO2 in the HCVD process and its negative impact on solar cell device performance are revealed. As the counter-measure, potassium sulfamate (H2KNO3S) is introduced as the passivation layer to both mitigate the oxygen loss issue of SnO2 and passivate the uncoordinated Pb2+ in the perovskite film. In parallel, N-methylpyrrolidone (NMP) is used as the solvent to dissolve PbI2 by forming the intermediate phase of PbI2•NMP, which can greatly lower the energy barrier for perovskite nucleation in the HCVD process. The perovskite seed is employed to further modulate the kinetics of perovskite crystal growth and improve the grain size. The resultant solar cells yield a champion power conversion efficiency (PCE) of 21.98% (0.09 cm2) with a stable output performance of 21.15%, and the PCEs of the mini-modules are 16.16% (22.4 cm2, stable output performance of 14.72%) and 12.12% (91.8 cm2). Furthermore, the unencapsulated small area device shows an outstanding operational stability with a T80 lifetime exceeding 4000 h.journal articl

    Topology hierarchy of transition metal dichalcogenides built from quantum spin Hall layers

    Full text link
    The evolution of the physical properties of two-dimensional material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal two-dimensional building blocks of various three-dimensional topological phases. However, the stacking geometry was previously limited to the bulk 1T'-WTe2 type. Here, we introduce the novel 2M-TMDs consisting of translationally stacked 1T'-monolayers as promising material platforms with tunable inverted bandgaps and interlayer coupling. By performing advanced polarization-dependent angle-resolved photoemission spectroscopy as well as first-principles calculations on the electronic structure of 2M-TMDs, we revealed a topology hierarchy: 2M-WSe2, MoS2, and MoSe2 are weak topological insulators (WTIs), whereas 2M-WS2 is a strong topological insulator (STI). Further demonstration of topological phase transitions by tunning interlayer distance indicates that band inversion amplitude and interlayer coupling jointly determine different topological states in 2M-TMDs. We propose that 2M-TMDs are parent compounds of various exotic phases including topological superconductors and promise great application potentials in quantum electronics due to their flexibility in patterning with two-dimensional materials

    Forced Notch Signaling Inhibits Commissural Axon Outgrowth in the Developing Chick Central Nerve System

    Get PDF
    BACKGROUND: A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged. CONCLUSIONS/SIGNIFICANCE: We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    PigBiobank: a valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs

    Get PDF
    © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.National Natural Science Foundation of China [32022078]; National Key R&D Program of China [2022YFF1000900]; Local Innovative and Research Teams Project of Guangdong Province [2019BT02N630]; China Agriculture Research System [CARS-35]. Funding for open access charge: National Natural Science Foundation of China [32022078].Peer reviewe

    Synthesen, Strukturen und Reaktivität von Divalent Germanium -und Tin verbindungen mit dam Diketiminato Ligand

    No full text
    In dieser Arbeit diente der Diketiminato-Ligand als stabilisierender Anteil für Germanium- und Zinn-Verbindungen. Aufgrund der sterischen Größe und der intramolekularen Koordination des Liganden können einige ungewöhnliche Verbindungen erhalten werden, was durch eine Vielzahl von Ergebnissen dokumentiert wird. Zusätzlich können diese Verbindungen nützlich für weiterführende Reaktionen sein. Die Vorstufen, das Germanium(II)chlorid [{HC(CMeNAr)2}GeCl] (3) und das Zinn(II)chlorid [{HC(CMeNAr)2}SnCl] (5), wurden in hohen Ausbeuten dargestellt und Strukturell charakterisiert. Die Einkristall-Struktur-Analysen von 3 und 5 zeigen, dass beide Verbindungen monomer vorliegen. Der Ligand chelatisiert das Metall, welches dreifach koordiniert ist und eine verzerrt tetraedrische Umgebung einnimmt. Eine Ecke des Tetraeders wird durch ein freies Elektronenpaar besetzt, somit ist die Grundstruktur dieser Verbindungen umschrieben. Die erste strukturell-charakterisierte Organogermanium(II)fluorid [{HC(CMeNAr)2}GeF] (8) wurde durch Reaktion von 3 mit Me3SnF erhalten. Die Reaktivität des einsamen Elektronenpaares in 8 wurde mit Me3SiN3 untersucht. Die Behandlung von 3 mit NaBH4 im siedenden THF führte zur Bildung von [{HC(CMeNAr)2}Ge(H)BH3] (11), das erste stabile Germanium(II)hydrid. Das koordinierte BH3 in 11 konnte einfach mit PMe3 entfernt werden, wodurch das freie Hydrid [{HC(CMeNAr)2}GeH] (13) erhältlich wurde. Reaktion von 11 mit tBuLi in Diethylether ergab [{HC(CCH2NAr)CMeNAr}Ge(H)BH3]Li(Et2O)3 14, wobei ein Wasserstoffatom einer Methylgruppe des Liganden eliminiert und somit eine Methylen-Gruppe gebildet wurde. Die erhaltenen Verbindungen 11, 13 und 14 weisen Unterschiede in ihren IR- und NMR-spektroskopischen Daten von den entsprechenden Germanium(IV)-Verbindungen auf. Oxidative Addition von elementaren Schwefel mit 3 ergab eine Beispielverbindung mit einer formalen Doppelbindung zwischen einem Element der Gruppe 14 mit einem der Gruppe 16 und zusätzlich einer Bindung zu einem Halogenatom [{HC(CMeNAr)2}Ge(S)Cl] (15). Das Fluoro-Analogon [{HC(CMeNAr)2}Ge(S)F] (16) konnte auf zwei Wege dargestellt werden: durch Fuorierung von 15 mit Me3SnF oder mit 8 durch oxidative Addition mit elementaren Schwefel. Die Reaktivität von 15 wurde durch Verwendung des kleinsten Alkylierungsreagenz MeLi untersucht, was zu [{HC(CMeNAr)2}Ge(S)Me] (17) führte. Die bis dato strukturbekannten Doppelbindunssysteme zwischen schwereren Hauptgruppenelemente sind an sterisch anspruchsvolle Liganden gebunden. Mit dieser Reaktion konnte zum ersten Mal eine kleine Alkylgruppe in ein solches System eingeführt werden. Die Chemie von schwereren Hauptgruppenelementen mit einer Bindung zu einem Halogenatom und einem Doppelbindungssystem wurde für die entsprechenden Selen-Verbindungen von 15 17 weiterentwickelt. Die Verbindungen [{HC(CMeNAr)2}Ge(Se)X] (X = Cl (18), F (19), nBu (20)) wurden erhalten und die Struktur von 18 und 20 bestimmt. Durch den Diketiminato-Liganden stabilisierte und mit einer kleinen Alkylgruppe substituierte Germanium(II)-Verbindungen [{HC(CMeNAr)2}GeR] (R = Me (21), nBu (22)) konnten durch Einkristall-Struktur-Analyse strukturell charakterisiert werden. Verbindungen [{HC(CMeNAr)2}Ge(Se)Me] (23), [{HC(CCH2NAr)CMeNAr}Ge(Me)N(H)SiMe3] (24) und [{HC(CMeNAr)2}GeMe2I] (25) wurden aus 21 mit entsprechenden Reaktionspartner synthetisiert. Um Zinn(II)-Komplexe mit unterschiedlichen Liganden außer Chlor zu erhalten, wurde [{HC(CMeNAr)2}SnCl] (5) mit ausgewählten Substraten zur Reaktion gebracht. Die so erhaltenden Derivate [{HC(CMeNAr)2}2Sn] (26), [{HC(CMeNAr)2}SntBu] (27), [{HC(CMeNAr)2}SnOSO2CF3] (28) und [{HC(CMeNAr)2}SnN3] (29) wurden vollständig charakterisiert. Die Festkörperstrukturen von 26 und 28 wurden bestimmt und die Struktur von 27 durch das 119Sn-NMR ermittelt
    corecore