16 research outputs found

    Uncovering the candidate genes related to sheep body weight using multi-trait genome-wide association analysis

    Get PDF
    In sheep, body weight is an economically important trait. This study sought to map genetic loci related to weaning weight and yearling weight. To this end, a single-trait and multi-trait genome-wide association study (GWAS) was performed using a high-density 600 K single nucleotide polymorphism (SNP) chip. The results showed that 43 and 56 SNPs were significantly associated with weaning weight and yearling weight, respectively. A region associated with both weaning and yearling traits (OARX: 6.74–7.04 Mb) was identified, suggesting that the same genes could play a role in regulating both these traits. This region was found to contain three genes (TBL1X, SHROOM2 and GPR143). The most significant SNP was Affx-281066395, located at 6.94 Mb (p = 1.70 × 10−17), corresponding to the SHROOM2 gene. We also identified 93 novel SNPs elated to sheep weight using multi-trait GWAS analysis. A new genomic region (OAR10: 76.04–77.23 Mb) with 22 significant SNPs were discovered. Combining transcriptomic data from multiple tissues and genomic data in sheep, we found the HINT1, ASB11 and GPR143 genes may involve in sheep body weight. So, multi-omic anlaysis is a valuable strategy identifying candidate genes related to body weight

    Segregation ratios of colored grains in F1 hybrid wheat

    No full text
    Nutritious and functional foods from wheat have received great attention in recent years. Colored-grain wheat contains a large number of nutrients such as anthocyanins and hence the breeding is interesting. In this work, colored-grained wheat lines of mixed pollination of einkorn wheat (Triticum boeoticum, AA) and French rye (French Secale cereale, RR) were used as male parents and wheat line Y1642 (derived from common wheat and Agropyron elongatum, AABBDD) was used as the female parent. These colored wheat were used for diallel cross to study the segregation ratios of F1 colored grains. Results show that the color inheritance of purple-grained wheat follows a maternal inheritance pattern and that the blue-grained wheat expresses xenia in most cases. In some circumstances, the grains with different color shades appear in the same spike

    Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo

    No full text
    The sustained-release properties of the biodegradable nano-drug delivery systems were used to improve the residence time of the chemotherapeutic agent in the body. These drug delivery systems were widely used to deliver chemotherapeutic drugs. The 5-fluorouracil loaded chitosan nanoparticles prepared in this paper have the above advantage. Here, we found that when the mass ratio of 5-fluorouracil and chitosan was 1:1, the maximum drug loading of nanoparticles was 20.13 ± 0.007%, the encapsulation efficiency was 44.28 ± 1.69%, the particle size was 283.9 ± 5.25 nm and the zeta potential was 45.3 ± 3.23 mV. The prepared nanoparticles had both burst-release and sustained-release phases in vitro release studies. In addition, the inhibitory effect of the prepared nanoparticles on gastric cancer SGC-7901 cells was similar to that of 5-fluorouracil injection, and the blank vector had no obvious inhibitory effect on SGC-7901 cells. In the pharmacokinetic study of rats in vivo, we found that AUC (0−t), MRT (0−t) and t1/2z of nanoparticles were significantly increased in vivo compared with 5-fluorouracil solution, indicating that the prepared nanoparticles can play a role in sustained-release

    Design and simulation of locally enhanced microchannel heat sink for diode partially pumped slab laser

    No full text
    With the power level of diode-pumped solid-state laser (DPSSL) rising continuously, its thermal effect has become the main problem limiting the laser performance. In this paper, based on the heat distribution of diode partially end-pumped slab (Innoslab) laser, a shunt rectangular microchannel heat sink with locally enhanced heat dissipation is designed. Firstly, multi-stage parallel short channels are designed in the heat concentration area to enhance the solid-liquid heat exchange in this area, and the effects of structure and working conditions on its heat dissipation performance are investigated. Secondly, the copper layer is introduced into the end face of the low thermal conductivity crystal to form a high thermal conductivity path, which alleviates the heat accumulation inside the crystal. Under a certain condition, compared with the traditional liquid-cooled plate system, the maximum temperature of the laser crystal is reduced from 169.62 to 118.18 °C, the pressure drop is reduced by 66.75%, and the total mass of the system is reduced to 4.87% of the original system, which effectively improves the practical performance of the device

    Functional identification of MdMYB5 involved in secondary cell wall formation in apple

    Get PDF
    Being the principal elements of secondary cell wall, cellulose and lignin both play a strengthening role in plant structures and stress resistance. However, little research has been done regarding the molecular mechanisms involved in the formation of cellulose and lignin in apple. In this study, in order to better understand the regulatory network in the formation of secondary cell wall, an R2R3 MYB transcriptional factor MdMYB5 was identified and explored. The subcellular localization experiments showed that MdMYB5 could function in the nucleus. Even though lignin and cellulose content, and the expression of their biosynthesis related genes decreased in the MdMYB5-RNAi apple, the ectopic overexpression of MdMYB5 promotes lignin and cellulose content in Arabidopsis, which contributes to the dwarf phenotype. At the same time, salt and osmotic stress affect MdMYB5-RNAi apple tissue cultures. Further transcriptional activation assays carried out demonstrated that MdMYB5 could be activated by MdMYB46 and MdSND1. In conclusion, MdMYB5 was required for the normal formation of secondary cell wall in apple and could be activated by the key regulatory factors MdMYB46 and MdSND1

    Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst

    No full text
    Abstract Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g−1 h−1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g−1 h−1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis

    Temporal Expression Profiles Reveal Potential Targets during Postembryonic Development of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae)

    No full text
    Sarcophaga peregrina (Robineau-Desvoidy, 1830) is a species of medical and forensic importance. In order to investigate the molecular mechanism during postembryonic development and identify specific genes that may serve as potential targets, transcriptome analysis was used to investigate its gene expression dynamics from the larval to pupal stages, based on our previous de novo-assembled genome of S. peregrina. Totals of 2457, 3656, 3764, and 2554 differentially expressed genes were identified. The specific genes encoding the structural constituent of cuticle were significantly differentially expressed, suggesting that degradation and synthesis of cuticle-related proteins might actively occur during metamorphosis. Molting (20-hydroxyecdysone, 20E) and juvenile (JH) hormone pathways were significantly enriched, and gene expression levels changed in a dynamic pattern during the developmental stages. In addition, the genes in the oxidative phosphorylation pathway were significantly expressed at a high level during the larval stage, and down-regulated from the wandering to pupal stages. Weighted gene co-expression correlation network analysis (WGCNA) further demonstrated the potential regulation mechanism of tyrosine metabolism in the process of puparium tanning. Moreover, 10 consistently up-regulated genes were further validated by qRT-PCR. The utility of the models was then examined in a blind study, indicating the ability to predict larval development. The developmental, stage-specific gene profiles suggest novel molecular markers for age prediction of forensically important flies

    Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion

    Get PDF
    Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FEpropanol) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FEpropanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion
    corecore