10 research outputs found

    Two simple assays for assessing the seeding activity of proteopathic tau

    Get PDF
    The regional distribution of neurofibrillary tangles of hyperphosphorylated tau aggregates is associated with the progression of Alzheimer’s disease (AD). Misfolded proteopathic tau recruits naïve tau and templates its misfolding and aggregation in a prion-like fashion, which is believed to be the molecular basis of propagation of tau pathology. A practical way to assess tau seeding activity is to measure its ability to recruit/bind other tau molecules and to induce tau aggregation. Based on the properties of proteopathic tau, here we report the development of two simple assays to assess tau seeding activity ----- capture assay in vitro and seeded-tau aggregation assay in cultured cells. In the capture assay, proteopathic tau was applied onto a nitrocellulose membrane and the membrane was incubated with cell lysate containing HA-tagged tau151-391 (HA-tau151-391). The captured tau on the membrane was determined by immuno-blots developed with anti-HA. For the seeded-tau aggregation assay, HEK-293FT cells transiently expressing HA-tau151-391 were treated with proteopathic tau in the presence of Lipofectamine 2000 and then lysed with RIPA buffer. RIPA-insoluble fraction containing aggregated tau was obtained by ultracentrifugation and analyzed by immuno-blot developed with anti-HA. To validate these two assays, we assessed the seeding activity of tau in the middle frontal gyrus, middle temporal gyrus and basal forebrain of AD and control brains and found that AD, but not control, brain extracts effectively captured and seeded tau151-391 aggregation. Basal forebrain contained less phospho-tau and tau seeding activity. The levels of captured tau or seeded-tau aggregates were positively correlated to the levels of phospho-tau, Braak stages and tangle sores. These two assays are specific and sensitive and can be carried out in a regular biomedical laboratory setting by using routine biochemical techniques

    Pathological Tau From Alzheimer’s Brain Induces Site-Specific Hyperphosphorylation and SDS- and Reducing Agent-Resistant Aggregation of Tau in vivo

    Get PDF
    Neurofibrillary tangles (NFTs) made up of hyperphosphorylated tau are a histopathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Hyperphosphorylation of tau is responsible for its loss of normal physiological function, gain of toxicity and its aggregation to form NFTs. Injection of misfolded tau seeds into mouse brain induces tau aggregation, but the nature of tau phosphorylation in pathologic tau seeded pathology is unclear. In the present study, we injected hyperphosphorylated and oligomeric tau isolated from AD brain (AD P-tau) into hippocampus of human tau transgenic mice and found that in addition to tau aggregation/pathology, tau was hyperphosphorylated at Ser202/Thr205, Thr212, Ser214, Thr217, Ser262, and Ser422 in AD P-tau injected hippocampus and at Ser422 in the contralateral hippocampus and in the ipsilateral cortex. AD P-tau-induced AD-like high molecular weight aggregation of tau that was SDS- and reducing agent-resistant and site-specifically hyperphosphorylated in the ipsilateral hippocampus. There were no detectable alterations in levels of tau phosphatases or tau kinases in AD P-tau-injected brains. Furthermore, we found that hyperphosphorylated tau was easier to be captured by AD P-tau and that aggregated tau was more difficult to be dephosphorylated than the non-aggregated tau by protein phosphatase 2A (PP2A). Based on these findings, we speculate that AD P-tau seeds hyperphosphorylated tau to form aggregates, which resist to the dephosphorylation by PP2A, resulting in hyperphosphorylation and pathology of tau

    Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice

    No full text
    Abstract Background Accumulating evidence indicates that Tau pathology can spread from neuron to neuron by intake and coaggregation of the hyperphosphorylated Tau (p-Tau) seeds with the host neuron protein. Thus, clearance of Tau seeds by immunization with Tau antibodies could provide a potential therapeutic opportunity to block the spread of the pathology in Alzheimer’s disease (AD) and other tauopathies. We report prevention of the seeding and spread of tau pathology with mouse monoclonal antibody 43D against the N-terminal projection domain of Tau (Tau 6–18) in triple-transgenic AD (3 × Tg-AD) mice. Methods Female 11- to 12-month-old 3 × Tg-AD mice were intravenously immunized weekly for 6 weeks with 15 μg/injection of mouse monoclonal antibody 43D or with mouse immunoglobulin G as a control. AD p-Tau isolated from a frozen autopsied AD brain was unilaterally injected into the right hippocampus on the day of the second dose of immunization. Tau pathology and its effect on Aβ pathology were assessed by immunohistochemical staining. Results We found that the injection of AD p-Tau into the hippocampus of 11- to 12-month-old 3 × Tg-AD mice time-dependently induced Tau aggregation in the hippocampus and promoted the spread of Tau pathology to the contralateral hippocampus. Tau pathology was observed as early as 6 weeks after AD p-Tau injection. Tau pathology templated by AD p-Tau was thioflavin-S-positive and was about two-fold greater than that seen in naive 18-month-old 3 × Tg-AD mice; Tau pathology in the latter was thioflavin-S-negative. Immunization with Tau antibody 43D dramatically blocked AD p-Tau seeding in the ipsilateral hippocampus and inhibited its propagation to the contralateral side in 3 × Tg-AD mice. Furthermore, AD p-Tau injection enhanced the amyloid plaque load in the ipsilateral side, and immunization with 43D showed a tendency to attenuate it. Conclusions These findings indicate that AD p-Tau-injected 3 × Tg-AD mice represent a practical model to study the seeding and spread of Tau pathology, their effect on Aβ pathology, and the effect of Tau immunotherapy on both Tau and Aβ pathologies. Immunization with Tau antibody 43D to Tau 6–18 can prevent the seeding and spread of Tau pathology, making it a potential therapeutic treatment for AD and related tauopathies
    corecore