156 research outputs found

    Statistical Inference of Diffusion Networks

    Get PDF

    Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica

    Get PDF
    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12) to p-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity

    Conformation and Catalytic Properties Studies of Candida rugosa

    Get PDF
    Enantioselective esterification of ibuprofen was conducted to evaluate the enzyme activity and ees of lipase from Candida rugosa (CRL7) in ten conventional organic solvents and three ionic liquids. Different alcohols were tested for selecting the most suitable acyl acceptor due to the fact that the structure of alcohols (branch and length of carbon chains; location of –OH functional group) could affect the enzyme activity and ees. The results of alcohol and solvent selection revealed that 1-isooctanol and isooctane were the best substrate and reaction medium, respectively, because of the highest enzyme activity and ees. Compared with the control, conformational studies via FT-IR indicate that the variations of CRL7’s secondary structure elements are probably responsible for the differences of enzyme activity and ees in the organic solvents and ionic liquids. Moreover, the effects of reaction parameters, such as molar ratio, water content, temperature, and reaction time, in the selected reaction medium, were also examined

    Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: A non-edible and alternative source of bio energy.

    Get PDF
    Abstract In East Asia, for thousands of years, the fruit of Chinese tallow tree ( Sapium sebiferum ) has been used for multiple purposes because of its chemical composition; the presence of high amounts of lipids is remarkable, showing potential to be used as substrate for biodiesel synthesis. Previously have been reported the use of alkaline and enzymatic catalysts, microwave technology and the use of ionic liquids as co-solvents with the lipids of this tree species to produce biodiesel. This study shows the results of the use of Burkholderia cepacia lipase as enzymatic catalyst for transesterification of Chinese Tallow Kernel oil (CTK), extracted from the fruit of Chinese tallow tree, into biodiesel, with the use of ultrasonic assisted technology and without the usage of solvents. The optimal operational parameters were determined and the reactions were developed in a batch reactor with the use of ultrasonic irradiation and emulsification to enhance the mass transfer. The scaled-up experiments, in an especially designed 3 L capacity reactor, showed promising results, obtaining 55.20% biodiesel and a kinematic viscosity of 10.31 mm 2 .s −1 in only 4 h, in comparison with previously published ( in vitro ) methods. The valorization of this non-edible source of oil represents an opportunity to use as an alternative source for bioenergy and also to tackle the uncontrolled expansion of this oleaginous tree species in some ecologically fragile ecosystems

    Generation of Transgene-Free Maize Male Sterile Lines Using the CRISPR/Cas9 System

    Get PDF
    Male sterility (MS) provides a useful breeding tool to harness hybrid vigor for hybrid seed production. It is necessary to generate new male sterile mutant lines for the development of hybrid seed production technology. The CRISPR/Cas9 technology is well suited for targeting genomes to generate male sterile mutants. In this study, we artificially synthesized Streptococcus pyogenes Cas9 gene with biased codons of maize. A CRISPR/Cas9 vector targeting the MS8 gene of maize was constructed and transformed into maize using an Agrobacterium-mediated method, and eight T0 independent transgenic lines were generated. Sequencing results showed that MS8 genes in these T0 transgenic lines were not mutated. However, we detected mutations in the MS8 gene in F1 and F2 progenies of the transgenic line H17. A potential off-target site sequence which had a single nucleotide that was different from the target was also mutated in the F2 progeny of the transgenic line H17. Mutation in the MS8 gene and the male sterile phenotype could be stably inherited by the next generation in a Mendelian fashion. Transgene-free ms8 male sterile plants were obtained by screening the F2 generation of male sterile plants, and the MS phenotype could be introduced into other elite inbred lines for hybrid production

    Advanced progress on χ(3) nonlinearity in chip-scale photonic platforms

    Get PDF
    χ(3) nonlinearity enables ultrafast femtosecond scale light-to-light coupling and manipulation of intensity, phase, and frequency. χ(3) nonlinear functionality in micro-and nano-scale photonic waveguides can potentially replace bulky fiber platforms for many applications. In this Review, we summarize and comment on the progress on χ(3) nonlinearity in chip-scale photonic platforms, including several focused hot topics such as broadband and coherent sources in the new bands, nonlinear pulse shaping, and all-optical signal processing. An outlook of challenges and prospects on this hot research field is given at the end

    A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    Get PDF
    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops
    • …
    corecore