
 

  

 

Aalborg Universitet

Statistical Inference of Diffusion Networks

Huang, Hao; Yan, Qian; Chen, Lu; Gao, Yunjun; Jensen, Christian S.

Published in:
I E E E Transactions on Knowledge & Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2019.2930060

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Huang, H., Yan, Q., Chen, L., Gao, Y., & Jensen, C. S. (2021). Statistical Inference of Diffusion Networks. I E E
E Transactions on Knowledge & Data Engineering, 33(2), 742-753. [8769880].
https://doi.org/10.1109/TKDE.2019.2930060

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

https://doi.org/10.1109/TKDE.2019.2930060
https://vbn.aau.dk/en/publications/9ad50a0c-124c-473e-b99b-b46f4d703827
https://doi.org/10.1109/TKDE.2019.2930060


1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2930060, IEEE
Transactions on Knowledge and Data Engineering

Response Letter for TKDE-2019-03-0210 

 

We thank the reviewers for taking time in helping us to improve this manuscript. We appreciate the constructive 

comments, and we have tried our best to address them in this new version. Below, we first summarize minor revisions, 

and then, we provide detailed responses to all the comments.  

 

List of the minor revisions  

1. In the second paragraph of Section 4.4 (Algorithm), we have re-written the explanation of algorithm steps with 

more details.  

2. At the end of Section 5.2 (Effect of Diffusion Network Size), we have added a paragraph to further discuss the 

effect of network size to the running time and space requirement of tested algorithms, which also explains the 

reason why we use current network sizes. 

3. In Section 6 (Conclusion), we have added a paragraph to explain why the SIDM algorithm would fail to recover a 

dynamic diffusion network whose node set or edge set changes over time.  

4. We have carefully proofread this manuscript multiple times in order to further improve its presentation.  

As a result, we believe that we have satisfactorily addressed all the reviewers’ concerns within the space constraint.  

 

 

Detailed response  

Response to reviewer #1:  

Comment 1.1: Authors have taken a very good problem and come up with some good result that will advance the state 

of the arts. I have a few concerns about the manuscript. (1) The size of the network taken for experimental results is 

very small. It should be at least 10000 nodes. 

 

Response 1.1: Thanks for the encouraging comments and valuable suggestion. In fact, based on extensive testing, we 

have found that the running time of the NetRate algorithm and MulTree algorithm rapidly increase with the growth of 

network size, and exceeds acceptable levels even with a medium network size of 1000. On the other hand, when the 

network size exceeds 1000, execution of the SIDN algorithm often witnesses out-of-memory errors. The reason is that 

NetRate and MulTree consider all propagation paths supported by each cascade without any pruning strategy, while 

SIDN records the MI (Mutual Information) value for each node pair for its MI-based pruning method. Thus, if the 

objective network contains more nodes, there will be significantly more possible propagation paths and relatively more 

node pairs, incurring higher computational costs for NetRate and MulTree and a larger space requirement for SIDN. 

Therefore, we have selected and tested networks with sizes varying from 100 to 750. To help our readers better 

understand the effect of network size to the tested algorithms as well as the reason why we use such network sizes, we 

provide the above explanation in Section 5.2 (Effect of Diffusion Network Size). 

 

Comment 1.2: (2) The explanation of steps is generally missing and that requires effort in understanding particularly 

where intermediate steps have been missed. 

 

Response 1.2: Thanks for pointing this out. We have revised the explanation of algorithm steps in the second paragraph 
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of Section 4.4 (Algorithm), with more details and hopefully better clarity. Our goal is that the revision will be helpful 

for our readers to better understand the SIDN algorithm. 

 

Comment 1.3: (3) Language needs some improvement and it should be checked again. 

 

Response 1.3: Thanks for the valuable suggestion. We have tried our best by requesting the available proof-reading 

service to correct grammatical errors and typos and improve the English presentation of the paper. We hope the  

presentation of this revision be logically smooth and grammatically acceptable without affecting the readers to get 

the main points. 

 

 

Response to reviewer #2:  

General Comment 2.1: An algorithm (SIDN) is provided to infer diffusion network structure based only the final 

infection status, not demanding monitoring of infection timestamps as diffusion process occurs, nor prior knowledge of 

the network. This leads to interesting applications to field s such as epidemic modelling and prevention an viral 

marketing. Accuracy and complexity of the algorithm are satisfactory. Paper is well-written, clearly explains its goals, 

interesting and well written paper, deserves publication. 

 

Response 2.1: Thanks for all the encouraging comments from the reviewer.  

 

 

Response to reviewer #3:  

General Comment 3.1: The method learns diffusion network structures based only on the final infection statuses of 

nodes. This approach does not rely on monitoring the infection timestamps of nodes as a diffusion process occurs. I 

have only one simple query. If the nodes enter or leave the network or the set of potential parents changes over time, is 

the network resilient to this? What would be the effect of changes if the infection timestamps are not observed? I think, 

author should discuss on the topic as they are not considering the infection timestamp. 

 

Response 3.1: Thanks for the encouraging comments and valuable suggestion. Our SIDN algorithm is proposed to 

infer influence relationships (i.e., edges) in diffusion networks with static structures. Thus, it focuses on the final 

statuses of nodes at the end of each diffusion process. If the node set or edge set changes over time, SIDN will miss 

many intermediate influence relationships and thus fail to recover a dynamic diffusion network. In this new version, we 

have pointed this out at the end of Section 6 (Conclusion), as suggested.  
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Statistical Inference of Diffusion Networks
Hao Huang, Qian Yan, Lu Chen, Yunjun Gao, Member, IEEE, and Christian S. Jensen, Fellow, IEEE

Abstract—To infer structures in diffusion networks, existing approaches mostly need to know not only the final infection statuses of
network nodes, but also the exact times when infections occur. In contrast, in many real-world settings, such as disease propagation,
monitoring exact infection times is often infeasible due to a high cost. We investigate the problem of how to learn diffusion network
structures based on only the final infection statuses of nodes. Instead of utilizing sequences of timestamps to determine potential
parent-child influence relationships between nodes, we propose to find influence relationships with high statistical significance. To this
end, we design a probabilistic generative model of the final infection statuses to quantitatively measure the likelihood of potential
structures of the objective diffusion network, taking into account network complexity. Based on this model, we can infer an appropriate
number of most probable parent nodes for each node in the network. Furthermore, to reduce redundant inference computations, we
are able to preclude insignificant candidate parent nodes from being considered during inferencing, if their infections have little
correlation with the infections of the corresponding child nodes. Extensive experiments on both synthetic and real-world networks offer
evidence that the proposed approach is effective and efficient.

Index Terms—Diffusion network, influence relationship, infection timestamp, probabilistic generative model

F

1 INTRODUCTION

ADiffusion network is a directed graph where an edge
from a parent to a child indicates that the parent

influences the child. Diffusion network inference aims to
reveal unknown influence relationships between nodes in
a diffusion network based on observed diffusion results.
This problem has received considerable attention in recent
years, in areas such as social networks [6], information
propagation [13], epidemic prevention [30], and viral mar-
keting [18]. Inferred diffusion network structures enable
an intuitive understanding of the underlying interactions
between nodes, and they help better predict, promote, or
prevent future diffusions.

Existing approaches to diffusion network inference
mostly assume that diffusion results are available that con-
sist of both the final infection statuses of nodes and the exact
times when infections occurred. In these approaches, nodes
infected sequentially within a time interval are assumed
to posses influence relationships, the previously infected
ones being regarded as potential parents of the subsequently
infected ones [20].

Exact infection timestamps of nodes are sometimes
straightforwardly available, for example, in online social
networks. However, in many real-world diffusion processes,
such timestamps are often unavailable. Examples include
the spread of epidemics and the viral marketing campaigns
[2]. Conducting a comprehensive survey of the prevailing
situation and marketing results are time-consuming and
expensive and cannot be conducted frequently. Even if
frequent comprehensive surveying is affordable, due to the
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• Y. Gao (corresponding author) is with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China. E-mail:
gaoyj@zju.edu.cn.

different incubation periods (i.e., the time from infection to
outbreak) and the uncertainties of respondents’ feedbacks,
the obtained temporal information is unlikely to reflect the
exact occurrence times of infections.

In order to conduct diffusion network inference without
infection times, new techniques are required that are able
to learn parent-child influence relationships, as it is no
longer possible to directly attribute the infection of a node to
particular previously infected parent nodes. To the authors’
knowledge, only two existing studies [2], [12] have partially
addressed the problem of inferring diffusion networks with-
out infection timestamps of nodes. These studies require
the availability of either all triples that capture the nodes
that are connected in diffusion paths (although diffusion
paths are not naturally visible or traceable in many diffusion
processes) or prior knowledge on the number of directed
edges in the objective diffusion network, which is also hard
to obtain in practice.

In contrast, we investigate the problem of learning diffu-
sion network structures from only the final infection statuses
of the nodes in historical diffusion processes. We propose
an effective and efficient approach called SIDN (Statistical
Inference of Diffusion Networks) to solving this problem.
SIDN reveals statistically significant influence relationships
by finding for each node a set of potential parent nodes
that are most likely to have generated the observed final
infection statuses. To achieve this, we develop a probabilistic
generative model based on relative entropy (a.k.a. Kullback-
Leibler divergence) to quantify the fit between an inferred
diffusion network structure and the observed final infec-
tion statuses. For each network node, the candidate parent
nodes bringing lower relative entropy are considered to
influence the node with higher probability. In addition, we
also take into account network complexity during parent
node selection, and we are able to derive a theoretical
upper bound on parent node set size, which in turn helps
SIDN to control the complexity of the inferred diffusion
network structure, thus avoiding too many inferred low-
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probability influence relationships that do not exist in the
corresponding real diffusion network. Furthermore, in order
to reduce redundant computations during the structure
inferencing, SIDN is able to identify candidate parent nodes
that are statistically insignificant by checking whether their
infections are independent or have extremely low correla-
tion with the infections of the corresponding child nodes.
Such insignificant candidates can then be disregarded from
consideration as potential parent nodes.

In summary, our key contributions include the following:
(1) Departing from existing approaches that rely on infection
timestamps, we propose a new statistical approach that
can infer diffusion network structure based on only the
final infection statuses of nodes, which are much more
easily available in practice. This approach does not rely on
monitoring the infection timestamps of nodes as a diffusion
process occurs, and correct observed infection timestamps
are not needed. The approach only needs the final infec-
tion statuses of nodes; other information, including prior
knowledge of the network, is not needed. (2) Our approach
takes into account both of the accuracy and complexity of
the inference result to find an appropriate number of parent
nodes for each network node, thus avoiding overly complex
inferred structures that are conceptually and computation-
ally intractable. (3) We present a heuristic pruning method
for the screening of candidate parent nodes that enables our
approach to eliminate redundant computations.

The remainder of the paper is organized as follows. We
review the related work in Section 2 and present a problem
statement in Section 3. We then cover the proposed SIDN
algorithm in Section 4, and we report experimental findings
in Section 5 and then offer conclusions in Section 6.

2 RELATED WORK

The existing approaches to diffusion network inference
can be categorized into two main groups: (1) infection
timestamp-based approaches, and (2) infection timestamp-
free approaches.

2.1 Infection Timestamp-Based Approaches
Most existing approaches to diffusion network inference
require the temporal information of node infections, as-
suming that the observed diffusion results used by them
(known as cascades) record the exact infection timestamp of
each infected node in every diffusion process. Three main
types of infection timestamp-based approaches have been
proposed: (1) the convex programming-based approach-
es, (2) the submodularity-based approaches, and (3) the
embedding-based approaches.

Convex programming-based approaches try to find diffusion
network structures that maximize the likelihood of given
cascades based on convex optimization. To approximate
optimal solutions, these approaches utilize different tech-
niques, such as sequential quadratic programming [7], [21],
the EM algorithm [27], [31], block coordinate descent [5],
stochastic and proximal gradient methods [4], [10], survival
theory [9], sparse recovery [26], and decoupling into mul-
tiple parallelizable problems [15], [22], [23], to solve their
optimization problems. These approaches generally exhibit
nice inference performance on tree-like or sparse networks.

Submodularity-based approaches transform the problem of
diffusion network inference into a problem of submodular
optimization, as they use likelihood functions of cascades
for given propagation trees that have the property of sub-
modularity. NetInf [8] and MulTree [11] are state-of-the-
art approaches of this type. Due to the submodularity of
their objective functions, both approaches adopt a greedy
algorithm to achieve a near-optimal solution. The main
difference between them is that during the submodular opti-
mization, NetInf considers only the most probable propaga-
tion tree, to achieve high efficiency, while MulTree considers
all propagation trees supported by each cascade, to achieve
high accuracy.

Embedding-based approaches map the nodes in observed
diffusion process into a latent embedding space, in which
the distance between each two mapped nodes represents
the transmission rate (or propagation probability). These ap-
proaches model the transmission rates using Weibull distri-
butions [16], uniform distributions [6], or via kernels [3], and
they learn the transmission rates between nodes based on
observed cascades. Although embedding-based approaches
do not explicitly reveal the diffusion network structures,
they enable users to observe influence relationships between
nodes via low-dimensional spaced visualizations.

The above three types of paradigms for diffusion net-
work inference all require complete and correct cascades.
Abrahao et al. [1] have proven that with an adequate
amount of complete and correct cascades, the objective d-
iffusion network can be inferred accurately using simple re-
construction approaches. Nevertheless, in reality, observed
cascades may have partially incorrect infection timestamps,
and they may miss partial snapshots of the network. Several
methods have been proposed to mitigate the effects of
partially incorrect [28] or missing infection timestamps [14],
[19]. These methods are complementary to the above three
types of approaches.

Departing from the infection timestamp-based ap-
proaches, our SIDN algorithm requires only the final infec-
tion statuses of nodes, which are much more easily accessi-
ble in many real-world diffusion processes. Therefore, SIDN
has a wider range of applicability, and is also unaffected by
incorrect and missing timestamps.

2.2 Infection Timestamp-Free Approaches

So far, two approaches have been proposed to infer diffusion
network structures without the help of node infection times-
tamps. Both approaches learn the influence relationships
between nodes, either from path traces (referred to as the
PATH approach) or based on lifting effects (referred to as the
LIFT approach).

PATH takes as inputs path-connected triples, each of
which is a set of three nodes that are activated along a dif-
fusion path through a network. It inserts edges between the
nodes that co-occur most frequently in the path-connected
triples [12]. This approach has nice properties such as a
solid mathematical foundation and low computational cost.
However, it requires path-connected triples, which are often
difficult or impossible to obtain from natural diffusion pro-
cesses. Even if complete and correct cascades are available,
inferring exact path-connected triples is still difficult.
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LIFT studies the problem of diffusion network inference
in the case that only initial and final infection statuses of
nodes are available [2]. It calculates the lifting effect of each
node u to another node v, which measures the increase in
the probability of v’s infection on the condition that u is
previously infected. LIFT discovers an edge by finding two
nodes with the currently largest lifting effect. Without prior
knowledge on the number of edges in the network, this
approach will iteratively add the discovered edges until all
nodes are connected.

Compared with the above two infection timestamp-free
approaches, the SIDN algorithm only requires the final
infection statuses of network nodes and does not rely on any
other information on infections or on prior knowledge on
the network. Therefore, the SIDN algorithm is more widely
applicable in practice.

3 PROBLEM STATEMENT

A diffusion network is represented as a directed graph G =
(V,E), where V = {v1, v2, ..., vn} is the set of n nodes in the
network, and E is the set of m directed edges (i.e., influence
relationships) between nodes. An edge from a parent node
vi to a child node vj indicates that when vi is infected and
vj is uninfected, vi will infect vj with a certain probability
(which can be regarded as the weight of the edge). Table 1
lists notation that will be used henceforth.

As a few existing studies offer proposal for how to
calculate edge weights based on observed infection status
results [32]. In contrast, we focus on inferring the unknown
directed edge set of the objective network. Formally, our
problem statement can be formulated as follows.

Given: a set S = {S1, ..., Sβ} of infection status results
observed on a diffusion network G in β historical diffu-
sion processes, where Sℓ = (xℓ

1, ..., x
ℓ
n) is a n-dimensional

vector that records the final infection status, xℓ
i ∈ {0, 1} (0

denotes uninfected, and 1 denotes infected) of each node
vi ∈ V observed at the end of the ℓ-th diffusion process
(ℓ ∈ {1, . . . , β}).

Infer: the unknown edge set E of diffusion network G.
In the problem statement, except for the given infection

status results S observed on the n nodes of the objective
diffusion network G, no other information about infections
and the network, such as infection timestamps, initially
infected nodes, and the number m of directed edges in the
network, is known.

4 THE SIDN ALGORITHM

We first explain how to measure the likelihood of inferred d-
iffusion network structures by presenting a relative entropy-
based probabilistic generative model of the node infection
statuses, followed by explaining how to trade off relative
entropy versus network complexity during diffusion net-
work inference. Then we present how to prune statistically
insignificant candidate parent nodes to eliminates redun-
dant computations before giving the detailed steps of the
SIDN algorithm. We finally offer a complexity analysis on
the SIDN algorithm.

TABLE 1
Notation

Symbol Description
G A directed graph.
V The set of nodes in G.
n The number of nodes in G.
vi The i-th node in V (1 6 i 6 n).
E The set of directed edges in G.
m The number of directed edges in G.
S The infection statuses of nodes in G

observed across β diffusion processes.
α The initial infection ratio of nodes.
β The number of diffusion processes on G.
xℓ
i The infection status of node vi in the

ℓ-th diffusion process
(1 6 i 6 n, 1 6 ℓ 6 β).

πℓ
i The infection statuses of vi’s parent

nodes in the ℓ-th diffusion process
(1 6 i 6 n, 1 6 ℓ 6 β).

Xi The infection status variable of node
vi ∈ V .

Fi The parent node set of node vi.
|Fi| The number of nodes in Fi.
XFi The set of infection status variables of

nodes in Fi.
p∗(X1, . . . , Xn) The true joint probability distribution of

node infection statuses.
p(X1, . . . , Xn) The joint probability distribution of node

infection statuses calculated by S.
KL(p∗, p) The relative entropy between

p∗(X1, . . . , Xn) and p(X1, . . . , Xn).
H(Xi, . . . , Xn) The entropy of variables {X1, . . . , Xn}.
H(Xi|XFi) The entropy of Xi conditioned on XFi .
p(x, f, w) The joint probability that random

variable X takes value x and XF,W

takes values f and w.
g(vi, Fi) The selection criterion for parent node

set Fi of node vi.
λ The coefficient of the penalty term in the

scoring function of parent node sets.
MI(Xi, Xj) The mutual information between the

infection statuses of nodes vi and vj .
τ A threshold for mutual information.
Pi The set of candidate parent nodes of

node vi
(∀vj ∈ Pi,MI(Xi,Xj) > τ ).

Ci The set of possible combinations of vi’s
candidate parent nodes.

4.1 Probabilistic Generative Model

In a diffusion network, since nodes are infected by other
nodes via the directed edges of the network, the diffusion re-
sult depends on the diffusion network structure. Therefore,
diffusion network inference is equivalent to finding a diffu-
sion network structure that is most likely to have generated
an observed diffusion result. In order to carry out diffusion
network inference with only the node infection status results
S observed across β diffusion processes, the essential work
is to infer the probabilistic generative model of S, i.e., the
true joint probability distribution p∗(X1, ..., Xn) over the
variables X1, ..., Xn of node infection statuses. Moreover, s-
ince the infection of a node can be affected only by its parent
nodes during the diffusion processes, we can reformulate
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p∗(X1, ..., Xn) as follows.

p∗(X1, ..., Xn) =
n∏

i=1

p∗(Xi | XF∗
i
), (1)

where F ∗
i is the set of true parent nodes of vi and XF∗

i
is the

variables of the infection statuses of vi’s true parent nodes.
Then, our goal is to find a diffusion network G so that

its corresponding probability distribution
∏n

i=1 p(Xi | XFi)
is an as good as possible approximation of approximates as
much as possible to

∏n
i=1 p

∗(Xi | XF∗
i
) (which is equal to

p∗(X1, ..., Xn)), where Fi is the parent node set of node vi
in G and XFi is the variables of the infection statuses of
vi’s parent nodes in G. To achieve this, we adopt relative
entropy (a.k.a. Kullback-Leibler divergence) to measure the
divergence between the above two probability distributions.
Formally, the relative entropy can be calculated as follows.

KL(p∗, p)

=
n∏

i=1

p∗(Xi | XF∗
i
)× log

∏n
i=1 p

∗(Xi | XF∗
i
)∏n

i=1 p(Xi | XFi)

=
∑

x1,...,xn

(
p∗(X1 = x1, . . . , Xn = xn)

× log p∗(X1=x1,...,Xn=xn)∏n
i=1 p(Xi=xi|XFi=πi

)

)

=
∑

x1,...,xn

(
p∗(X1 = x1, . . . , Xn = xn)
× log p∗(X1 = x1, . . . , Xn = xn)

)

−
∑

x1,...,xn

 p∗(X1 = x1, . . . , Xn = xn)

× log

(
n∏

i=1
p(Xi = xi|XFi = πi)

) ,

(2)

where xi is the infection status of node vi and πi captures
the infection statuses of vi’s parent nodes. The infection
status xi of vi has two possible values (0 or 1). Moreover,
as node vi has |Fi| parent nodes, there are 2|Fi| possible
combinations of the infection statuses of vi’s parent nodes.

We estimate the true joint probability distribution
p∗(X1, ..., Xn) by calculating a joint probability distribution
p(X1, ..., Xn) based on the observed node infection status
results S. Then, with the following definition of the joint
entropy of variables X1, . . . , Xn,

H(X1, . . . , Xn)

= −
∑

x1,...,xn

(
p(X1 = x1, . . . , Xn = xn)
× log p(X1 = x1, . . . , Xn = xn)

)
,

(3)

the relative entropy KL(p∗, p) can be estimated as follows.

KL(p∗, p)

=−H(X1, . . . , Xn)

−
∑

x1,...,xn

 p(X1 = x1, . . . , Xn = xn)

× log

(
n∏

i=1
p(Xi = xi|XFi = πi)

)  (4)

Let XLi = {X1, . . . , Xn}\{Xi, XFi}, and denote one pos-
sible value of XLi by ρi = {x1, . . . , xn}\{xi, πi}. Then,

the second item on the right-hand side of Eq. (4) can be
transformed as follows.∑

x1,...,xn

 p(X1 = x1, . . . , Xn = xn)

× log

(
n∏

i=1
p(Xi = xi|XFi = πi)

) 
=

∑
x1,...,xn

 p(X1 = x1, . . . , Xn = xn)

×
(

n∑
i=1

log p(Xi = xi|XFi = πi)

) 
=

n∑
i=1

∑
x1,...,xn

(
p(X1 = x1, . . . , Xn = xn)
× log p(Xi = xi|XFi

= πi)

)

=
n∑

i=1

∑
x1,...,xn

 p(Xi = xi, XFi = πi)
×p(XLi = ρi|Xi = xi, XFi = πi)
× log p(Xi = xi|XFi = πi)


=

n∑
i=1

∑
xi,πi


(

p(Xi = xi, XFi = πi)
× log p(Xi = xi|XFi = πi)

)
×
∑
ρi

p(XLi = ρi|Xi = xi, XFi = πi)


=

n∑
i=1

∑
xi,πi

(
p(Xi = xi, XFi = πi)
× log p(Xi = xi|XFi = πi)

)

(5)

Next, the entropy of Xi conditioned on XFi is as follows.

H(Xi | XFi)

= −
∑
xi,πi

(
p(Xi = xi, XFi = πi)
× log p(Xi = xi|XFi = πi)

)

= −
∑
xi,πi

 ∑β
ℓ=1

1
β I(x

ℓ
i = xi, π

ℓ
i = πi)

× log
∑β

ℓ=1 I(xℓ
i=xi,π

ℓ
i=πi)∑β

ℓ=1 I(πℓ
i=πi)

 ,

(6)

where I(·) is the indicator function. With this definition,
the formulation of relative entropy KL(p∗, p) can be finally
simplified as follows.

KL(p∗, p) = −H(X1, . . . , Xn) +
n∑

i=1

H(Xi | XFi) (7)

Note that in Eq. (7), the computation of joint entropy
H(X1, . . . , Xn) is independent of the diffusion network
structure, but depends only on the observed node infection
status results S. Therefore, for a given S, the value of
H(X1, . . . , Xn) is fixed, and the value of the relative entropy
KL(p∗, p) is determined by the parent node set Fi we find
for each node vi in the network. Specifically, a parent node
set Fi with smaller H(Xi | XFi) value results in a lower
relative entropy value.

Put differently, a small H(Xi | XFi) value indicates a
high probability that the infection of vi ∈ V is affected by
the nodes in Fi (Fi ⊂ V , vi ̸∈ Fi).

4.2 Consideration of Network Complexity
The comparison of values H(Xi | XFi) and H(Xi | XF ′

i
)

for two different parent node sets Fi and F ′
i can help us

estimate which parent node set has a higher probability of
affecting node vi’s infection. If Fi is a subset of F ′

i , i.e., Fi ⊆
F ′
i , the relationship H(Xi | XF ′

i
) 6 H(Xi | XFi) holds,

which can be explained by the following theorem and proof.

Theorem 1. Assume a diffusion network G with node set V
and node infection status results S. Further assume that a node
v ∈ V has infection status variable X and parent node set F with
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infection variables XF . Then, the value of H(X|XF ) decreases
with the growth of F .

Proof. For any node set W ⊆ V \{v, F}, the following
derivation hold.

H
(
X|X{F,W}

)
−H (X|XF )

=−
∑
x,f,w

p (x, f, w) log p (x|f, w) +
∑
x,f

p (x, f) log p (x|f)

=−
∑
x,f,w

p (x, f, w) log p (x|f, w)

+
∑
x,f

(∑
w

p (x, f, w)

)
log p (x|f)

=−
∑
x,f,w

p (x, f, w) log p (x|f, w)

+
∑
x,f,w

p (x, f, w) log p (x|f)

=
∑
x,f,w

p (x, f, w) log
p (x|f)

p (x|f, w)
,

(8)
where x, f , and w refer to the values of the infection status
variables X , XF , and XW , respectively.

Since the relationship log(y) 6 (y − 1) always holds for
any nonnegative real number y, we have

H
(
X|X{F,W}

)
−H (X|XF )

6
∑
x,f,w

p (x, f, w) ·
(

p (x|f)
p (x|f, w)

− 1

)
(9)

Moreover, the following formula derivation holds.∑
x,f,w

p (x, f, w) ·
(

p (x|f)
p (x|f, w)

− 1

)

=
∑
x,f,w

p (x, f, w)
p (x|f)

p (x|f, w)
−
∑
x,f,w

p (x, f, w)

=
∑
x,f,w

p (x|f, w) p (f, w) p (x|f)
p (x|f, w)

− 1

=
∑
x,f,w

p (f, w) p (x|f)− 1

=
∑
x,f

(∑
w

p (f, w)

)
p (x|f)− 1

=
∑
x,f

p (f) p (x|f)− 1

= 1− 1

= 0

(10)

Therefore, the relationship

H
(
X|X{F,W}

)
−H (X|XF ) 6 0 (11)

always hold, and the theorem is correct.

According to Theorem 1, the minimum of H(Xi|XFi) is
obtained after adding all other nodes to the parent node set
Fi. The reason is that each other node may possibly affect
the infection of node vi. And we have no prior knowledge
on vi’s parent nodes. However, if we take into account only
relative entropy to infer influence relationships and simply

pursue a lower value of H(Xi|XFi), the result will be a very
complex graph G that contains many low-probability influ-
ence relationships, many of which may not exist in reality.
Further, the resulting graph G will also be computationally
and conceptually difficult to use in practice.

On the other hand, if we include more nodes into the
parent node set Fi of vi for each vi ∈ V , this yields larger
statistical errors when computing H(Xi|XFi). The reason
is that given an Fi then for every possible combination
πij of the infection statuses of the nodes in Fi (where πij

refers to the j-th possible combination, 1 6 j 6 2|Fi|), we
need to find its instantiations from all the β historical dif-
fusion processes to estimate the corresponding probabilities
p(Xi = xi, XFi = πij) and p(Xi = xi|XFi = πij) (where
xi ∈ {0, 1}) in order to compute H(Xi|XFi). Therefore, the
number of probability estimations increases exponentially
with the cardinality of Fi. In each of these probability
estimations, an error may be introduced when the number
of corresponding instantiations is insufficient. For a fixed
number β of historical diffusion processes, the more prob-
ability estimations to make, the fewer the average avail-
able instantiations for each estimation, resulting in larger
statistical errors. In brief, the introduced statistical errors
are affected by two factors: (1) the number 2|Fi| of possible
infection status combinations of the nodes in each Fi and (2)
the number β of historical diffusion processes to be used.

To balance the relative entropy and the network com-
plexity and to reduce the introduction of statistical errors,
we combine the above two factors and add a penalty term
λ2|Fi| to H(Xi|XFi), where λ > 0 is a function of β. Then,
we have a selection criterion g(vi, Fi) for the parent node
set Fi of node vi ∈ V , which can be formulated as follows.

g(vi, Fi) = 2H(Xi|XFi
) + λ2|Fi|. (12)

A smaller value of g(vi, Fi) indicates that the current Fi is
a better parent node set selection for node vi. According to
the above selection criterion, inclusion of more parent nodes
for each node vi will decrease the value of 2H(Xi|XFi), but
will also result in an exponential increase in the value of the
penalty term λ2|Fi|, which will help us avoid adding too
much nodes into set Fi. Furthermore, to make the Fi select-
ed by g(vi, Fi) as consistent as possible with the true parent
node set F ∗

i of node vi, the λ used in g(vi, Fi) should satisfy
the conditions limβ→∞

λ
β = 0 and limβ→∞

λ
log log β = +∞.

This is explained by the following corollary, which follows
directly from Theorem 4 in reference [25].

Corollary 1. Let F̂i be the parent node set selected by the
criterion g(vi, Fi) = 2H(Xi|XFi) + λ2|Fi| for a given node
vi ∈ V based on infection status results S of β historical diffusion
processes, i.e., F̂i minimizes the value of g(vi, Fi) for a given vi.
If λ satisfies conditions

lim
β→∞

λ

β
= 0, and lim

β→∞

λ

log log β
= +∞, (13)

then F̂i is a strongly consistent estimator of the true parent node
set F ∗

i of node vi, i.e.,

lim
β→∞

F̂i = F ∗
i (14)

Based on Corollary 1, we set the value of λ to log β.
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To obtain an optimal Fi that minimizes the value of
criterion g(vi, Fi), one should intuitively find a few parent
nodes that are most likely to affect the infection of node
vi, and one should prevent the set of parent nodes from
growing too large. In fact, upper bound for the number of
parent nodes can be derived from the selection criterion.

Theorem 2. To minimize the value of g(vi, Fi), the size of set Fi

cannot exceed log 2β
log β .

Proof. Assuming that we have already found a parent node
set Fi for node vi, let node set Ri = V \ {Fi, vi} be the
remaining nodes after removing Fi and vi from V . Then if
we add a node vj ∈ Ri and any node set W ⊆ Ri\ {vj} to
Fi, the following relationships hold.

g (vi, {Fi, vj ,W})
= 2H(Xi|X{Fi,vj ,W}) + 2|{Fi,vj ,W}| log β

> 2H(Xi|X{Fi,Ri}) + 2|{Fi,vj ,W}| log β

> 2H(Xi|X{Fi,Ri}) + 2|{Fi,vj}| log β

(15)

If the value of 2H(Xi|X{Fi,Ri})+2|{Fi,vj}| log β exceeds
the current g(Fi), then we have that g(vi, {Fi, vj ,W}) >
g(vi, Fi), which indicates that adding node vj or any node
set {vj ,W} to the current Fi will increase the value of
g(vi, Fi). Therefore, if a node vj ∈ Ri can be added to the
parent node set Fi of node vi, the following prerequisite
must be met.

2H(Xi|X{Fi,Ri}) + 2|{Fi,vj}| log β

= 2H(Xi|X{Fi,Ri}) + 2|Fi|+1 log β

6 g(vi, Fi).

(16)

Moreover, the following relationship holds.

g(vi, Fi) = 2H(Xi | Fi) + 2|Fi| log β

6 2H(Xi | ∅) + 2|Fi| log β
(17)

Combining this with the prerequisite, we get:

2H(Xi | ∅) + 2|Fi| log β

> 2H(Xi|X{Fi,Ri}) + 2|Fi|+1 log β,
(18)

which can be simplified as

2|Fi| log β 6 2H(Xi | ∅)− 2H(Xi|X{Fi,Ri}) (19)

According to the definition of H(Xi|∅) and H(Xi|X{Fi,Ri}),
relationships H(Xi|∅) 6 β and H(Xi|X{Fi,Ri}) > 0 hold.
Combining them with the inequality above, we obtain

2|Fi| log β 6 2β (20)

This indicates that if any new parent node can be added to
the current Fi to decrease the value of g(vi, Fi), the number
|Fi| of nodes in current Fi should satisfy

|Fi| 6 log
2β

log β
(21)

In other words, the size of of set Fi cannot exceed log 2β
log β ,

and the theorem is correct.

Given the selection criterion g(vi, Fi) and Theorem 2,
we can apply a greedy search procedure to find the most
probable parent nodes for vi. The procedure starts from an

empty parent node set Fi, and expands Fi by iteratively
adding a node combination (i.e., a subset of V \ {vi}) that
decreases the value of the current g(vi, Fi) the most. The
procedure stops when the number of nodes in Fi reaches
the upper bound (i.e., |Fi| > log 2β

log β ) or no candidate
parent node for vi exists. This way, we can efficiently achieve
a locally optimal Fi. A similar greedy search procedure
is used commonly in many other applications, such as
influence maximization [29] and classification [32], due to
its efficiency and good result quality.

4.3 Pruning of Candidate Parent Nodes
To find for each node vi ∈ V a candidate parent node or
node set that can be added to its current parent node set
Fi during the greedy search procedure, a straightforward
method is to traverse all node combinations containing at
most log 2β

log β nodes from the candidate parent node set
V \ {vi}. This straightforward method is inefficient since
there are

∑log(2β/log β)
i=1

( i
n−1

)
combinations, where n is the

number of nodes in the network. Instead, we prune the
candidate parent nodes to reduce the number of possible
node combinations and to avoid redundant computations
during the greedy search procedure.

In order to minimize the value of g(vi, Fi), a node vk
with a small value of H(Xi|Xk) is more likely to be an
appropriate candidate parent node of node vi, compared
with a node vj with a large value of H(Xi|Xj). Observe that
for each node vj ∈ V , the upper bound of value H(Xi|Xj)
is H(Xi), i.e., H(Xi|Xj) 6 H(Xi). Then, if the value of
H(Xi|Xj) is large and close to its upper bound H(Xi), this
indicates that the uncertainty of variable Xi is almost un-
changed regardless of whether we take into account variable
Xj . Put differently, the infection statuses of the two nodes vi
and vj are independent or have extremely low correlation.
In information theory, the mutual information, abbreviated
as MI, of variables Xi and Xj is calculated as follows.

MI(Xi, Xj) = H(Xi)−H(Xi|Xj)

= p(Xi, Xj) log
p(Xi, Xj)

p(Xi)p(Xj)

(22)

The mutual information is the difference between entropy
H(Xi) and conditional entropy H(Xi|Xj). A value of
MI(Xi, Xj) close to 0 indicates that there is a very low
probability that nodes vi and vj have an influence re-
lationship with each other. Furthermore, in a real-world
diffusion network, each node vi often has a finite number
of parent nodes, and most other nodes in the network have
no influence relationship with vi. Therefore, most of the MI
values between the infection statuses of vi and its candidate
parent nodes are very close to 0. These small MI values form
a compact cluster with a very small mean (also close to 0).

Inspired by this line of reasoning, we introduce a heuris-
tic pruning method based on the MI values with the goal of
screening out insignificant candidate parent nodes for each
node. By performing a modified K-means algorithm with
K = 2 and one of the two means fixed at 0 through all
iterations of K-means, we can efficiently partition all MI
values into two groups, where one group has a mean very
close to 0. Let τ be the largest value in the cluster with
mean close to 0. Then, for each MI(Xi, Xj) 6 τ , we regard
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Algorithm 1: The SIDN Algorithm

Input : Node set V = {v1, . . . , vn}, infection status
results S = {S1, . . . , Sβ} observed on V .

Output: The diffusion network G = (V,E).
1 E ← ∅; // set of inferred directed edges
2 for each vi ∈ V do
3 for each vj ∈ V (j ̸= i) do
4 Calculate MI value MI(Xi, Xj) using Eq. (22);

5 Partition all MI values into two groups by K-means
(with K = 2 and one mean fixed at 0) and set τ to the
largest value in the group with mean close to 0;

6 for each vi ∈ V do
7 Pi ← ∅; // vi’s candidate parent node set
8 Ci ← ∅;//vi’s possible parent node combination set
9 Fi ← ∅; // vi’s inferred parent node set

10 for each vj ∈ V (j ̸= i) do
11 if MI(Xi, Xj) > τ then
12 Pi ← Pi

∪
{vj}; // insert vj into Pi

13 for each W ⊆ Pi, |W | 6 log 2β
log β do

14 Calculate g (vi,W ) using Eq. (12);
15 Ci ← {Ci,W}; // add a new element W to Ci

16 while Ci ̸= ∅ do
17 if |Fi| < log 2β

log β then
18 W ∗ ← arg min

W∈Ci

g (vi,W );

19 Fi ← Fi

∪
W ∗;

20 Ci ← Ci\W ∗;

21 else
22 break;

23 E ← {(vj , vi) | vj ∈ Fi}
∪
E; // (vj , vi) is directed

the corresponding node vj as an insignificant candidate
parent node for vi and exclude vj from the candidate parent
node set of vi. This pruning method allows us to screen
out insignificant candidate parent nodes, thus allowing the
SIDN algorithm to focus on parent node combinations that
are more likely to exist in the real network.

4.4 Algorithm
To find the most probable influence relationships, we in-
troduce a probabilistic generative model based on relative
entropy. By taking into account the network complexity, we
design a selection criterion to balance the relative entropy
and the complexity of inferred influence relationships, and
we simultaneously avoid introducing large statistical errors.
To eliminate redundant computations during the influence
relationship inferencing, we present a heuristic pruning
method to screen out insignificant candidate parent nodes.
Based on these computational elements, we propose the
SIDN algorithm for the problem of learning diffusion net-
work structure with only the infection status information.

The SIDN algorithm, outlined in Algorithm 1, takes as
inputs node set V of the objective diffusion network G and
a set S of infection status results observed on V across β
diffusion processes. It first initializes the inferred directed
edge set E of G as an empty set (line 1), following by

calculating the MI value for each node pair (lines 2–4), and
performing the modified K-means algorithm on all the MI
values (with K = 2 and one mean fixed at 0 through all
K-means iterations) to find a MI threshold τ (line 5), which
is used to screen out insignificant candidate parent nodes.
Then, the algorithm infers the incoming edges to each node
vi ∈ V by the following five steps: (1) Firstly, three empty
sets Pi, Ci and Fi are initialized to record vi’s candidate
parent nodes, possible parent node combinations and in-
ferred parent nodes, respectively (lines 7–9). (2) Secondly,
for each node vj ∈ V (j ̸= i) (line 10), if the corresponding
value of MI(Xi, Xj) is larger than MI threshold τ (line 11),
then the node vj will be inserted into the candidate parent
node set Pi of vi (line 12), otherwise it will be regarded as
an insignificant candidate parent node of vi. (3) Thirdly, for
each possible parent node combination W ⊆ Pi with size
less than log 2β

log β (line 13), which is the upper bound for the
size of a parent node set, the corresponding score g(vi,W ) is
calculated and recorded (line 14), and the node combination
W is added into possible parent node combination set Ci

as a new element (line 15). (4) Fourthly, the inferred parent
node set Fi will be continuously expanded with the parent
node combination W ∗ ∈ Ci that has the currently smallest
value of g(vi,W ) (W ∈ Ci) until the size of Fi reaches the
upper bound log 2β

log β or no more candidate parent node
combinations exist (lines 16–22). (5) Finally, a directed edge
from each node in Fi to vi is added to the inferred edge set
E of the objective diffusion network G (line 23).

4.5 Complexity Analysis

The most computationally expensive process in SIDN con-
sists of the following two parts. (1) To disqualify insignifi-
cant candidate parent nodes, calculating mutual information
values requires O(βn2) time, and performing K-means
clustering on the mutual information values takes O(tn2)
time, where n is the number of nodes in the network, β is
the number of diffusion processes, and t is the number of
K-means iterations (t ≪ n). (2) To find candidate parent
node sets, calculating all relative entropy values requires
O(η2κηnβ) time, since there are at most

∑η
i=1

( i
κ

)
< ηκη

candidate parent node combinations for each node and cal-
culating the relative entropy for each candidate parent node
combination takes at most O(βη) time, where η denotes the
upper bound of parent node set size (i.e., η = log 2β

log β ),
κ denotes the maximum number of candidate parent n-
odes for each node. Since most candidate parent nodes are
insignificant (discussed in Section 4.3), after screening out
these nodes with the proposed MI-based pruning method,
κ is usually much smaller than n, i.e., κ≪ n.

In summary, the overall time complexity of SIDN is
O(βn2 + tn2 + η2κηnβ), where t ≪ n, η ≪ n, and κ ≪ n.
Therefore, the running time of SIDN depends mainly on the
network size and the number of diffusion processes.

5 EXPERIMENTAL EVALUATION

We first introduce the experimental setup, and then report
on experiments designed to gain insight into the effective-
ness and efficiency of the SIDN algorithm on both synthetic
and real-world networks. To this end, we investigate the
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TABLE 2
Properties of LFR Benchmark Graphs used for Experiments.

Graphs n K T
LFR1-5 100,150,200,250,300 4 2
LFR6-10 200 2,3,4,5,6 2
LFR11-15 200 46 1,1.5,2,2.5,3

effects of diffusion network size, the average node degree,
the degree dispersion of the diffusion network, the initial
infection ratio, the transmission rates (i.e., the propaga-
tion probabilities between nodes), the number of diffusion
processes, the MI-based pruning method, and the network
complexity consideration on the accuracy and running time
of SIDN. All algorithms are implemented in Java, running
on a desktop PC with an Intel Core i3-6100 CPU at 3.70GHz
and 8GB RAM.

5.1 Experimental Setup

Networks. We adopt the LFR benchmark graphs [17] as the
synthetic networks. By using different graph generation pa-
rameters, such as the number n of nodes, the average degree
K of each node, and the degree distribution parameter T
(larger T implies less dispersion of degrees), we generate
three series of graphs with properties summarized in Table
2. In addition, we adopt two real-world networks, i.e.,
NetSci [24], which is a coauthorship network containing 379
scientists and 1602 coauthorships, and DUNF [31], which is
a microblogging network with 750 users and 2974 following
relationships, for the experimental evaluation.

Infection Data. The infection status results S can be
obtained by simulating β diffusion processes on each net-
work with randomly selected initially infected nodes in each
simulation (the initial infection ratio is α). Corresponding
cascades are also recorded for tested cascade-based algo-
rithms in the experiments. In each diffusion process, each
infected node tries to infect its uninfected child nodes with
a given transmission rate, which is subjected to a Gaussian
distribution with mean µ and variance 0.05, to ensure that
more than 95% of all transmission rate values are within the
range from µ− 0.1 to µ+ 0.1.

Performance Criteria. To evaluate the accuracy of the
SIDN algorithm on the inference of diffusion network struc-
ture, we report the F-score (i.e., the harmonic mean of
precision and recall) of its inferred directed edges, which
can be calculated as F -score = 2·Precision·Recall

Precision+Recall , where
Precision = NTP

NTP+NFP
and Recall = NTP

NTP+NFN
. Here,

NTP denotes the number of true positives, i.e., the edges in
the real network that are inferred correctly by the algorithm;
NFP denotes the number of false positives, i.e., edges that
do not exist in the real network, but that are inferred falsely
by the algorithm; and NFN denotes the number of false
negatives, i.e., edges that exist in the real network, but that
are not inferred by the algorithm.

Benchmark Algorithms. Among the existing infection
timestamp-based algorithms, embedding-based methods do
not infer an explicit diffusion network structure. Therefore,
we compare our algorithm with the state-of-the-art convex
programming-based approach NetRate [7] and the high
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Fig. 1. Effect of Diffusion Network Size

performance submodularity-based algorithm MulTree [11].
In addition, as the PATH algorithm [12] requires all path con-
nected node triples, which are difficult to obtain in practice,
we choose the infection timestamp-free approach LIFT [2]
for comparison. Since NetRate infers the transmission rate
between each two nodes in the network, we give NetRate a
preferential treatment in accuracy comparisons. Specifically,
when calculating the F-scores of edges whose transmission
rates exceed a threshold, we use different thresholds to find
the highest F-score and report it as the accuracy of NetRate.
Moreover, since MulTree and LIFT need users to specify the
number of edges to be inferred, we provide the real number
m of edges in the network to these two algorithms.

5.2 Effect of Diffusion Network Size

To study the effect of diffusion network size on algorithm
performance, we adopt five synthetic networks, i.e., LFR1–
5, where the size varies from 100 to 300. We simulate 150
diffusion processes on each network (i.e., β = 150). In
each simulation, 0.15n nodes are randomly selected as the
initial infected nodes (i.e., α = 0.15), and the mean µ of
transmission rates is set to 0.3.

Fig. 1 reports the F-score and running time of each
algorithm, from which we can observe that (1) a larger
diffusion network size tends to degrade the accuracy of
NetRate, LIFT, and MulTree, while the accuracy of SIDN
is reasonably insensitive to the diffusion network size and
outperforms the other algorithms. (2) The running time of
each algorithm increases with the diffusion network size.
LIFT executes the fastest (but with low accuracy), and SIDN
is an order of magnitude faster (and has higher accuracy)
than MulTree and NetRate.

In addition, based on extensive testing on larger net-
works, we have found that the running time of NetRate
and MulTree rapidly increase with the growth of network
size. Even with a medium network size, their running time
exceeds acceptable levels, and meanwhile, the execution of
SIDN starts to witness out-of-memory errors (given these
facts, we have selected and tested networks with sizes vary-
ing from 100 to 750). The reason behind is that NetRate and
MulTree consider all propagation paths supported by each
cascade without any pruning strategy, while SIDN records
the MI value for each node pair for its MI-based pruning
method. Thus, if the objective network contains more nodes,
there will be significantly more possible propagation paths
and relatively more node pairs, incurring higher compu-
tational costs for NetRate and MulTree and a larger space
requirement for SIDN.
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Fig. 3. Effect of Node Degree Dispersion of Diffusion Network

5.3 Effect of Average Node Degree

The edge density of diffusion network can affect the number
of influence relationships. The average node degree, i.e., the
total number of edges divided by the total number of nodes,
is usually used to represent the edge density of a network.

To study the effect of a network’s average degree on
algorithm performance, we test the algorithms on five syn-
thetic networks, i.e., LFR6–10, where the average degree
varies from 2 to 6. We simulate 150 diffusion processes on
each network (i.e., β = 150). In each simulation, 0.15n nodes
are randomly selected as the initially infected nodes (i.e.,
α = 0.15), and the mean µ of transmission rates is set to 0.3.

Fig. 2 reports the F-score and running time of each al-
gorithm, from which we can observe that (1) as the average
degrees of diffusion networks increase, accuracy of MulTree,
SIDN, and LIFT decrease. The accuracy of NetRate increases
when the average degree increases from 2 to 5 and then
decreases when the average degree reaches 6. Compared
with the other tested algorithms, the SIDN algorithm has the
best accuracy. (2) The running times of MulTree, NetRate,
and SIDN increase with the growth of average degree,
and SIDN shows a significant running time advantage over
MulTree and NetRate.

5.4 Effect of Node Degree Dispersion

If a diffusion network has a large degree dispersion, i.e.,
different nodes have different numbers of edges, then there
will be variations in the influence diffusion capabilities of
different parts of the network, which can affect the diffusion
processes and the final infection statuses of nodes.

To study the effect of the node degree dispersion on algo-
rithm performance, we test the algorithms on five synthet-
ic networks, i.e., LFR11–15, where the degree distribution
parameters vary from 1 to 3 (the corresponding standard
deviation of the degree varies from about 0.8 to about
0.4). We simulate 150 diffusion processes on each network
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Fig. 5. Effect of Initial Infection Ratio on DUNF

(i.e., β = 150). In each of these simulations, 0.15n nodes
are randomly selected as the initially infected nodes (i.e.,
α = 0.15), and the mean transmission rate µ is set to 0.3.

Fig. 3 reports the F-score and running time of each
algorithm, from which we can observe that (1) an increase
in the degree distribution parameter tends to reduce the ac-
curacy of MulTree. The accuracy of NetRate, LIFT, and SIDN
is reasonably insensitive to degree dispersion, and SIDN
performs better than other algorithms. (2) Degree dispersion
has little effect on the running times of the algorithms, and
SIDN has better running time performance than NetRate
and MulTree, and LIFT is fastest.

5.5 Effect of Initial Infection Ratio
The ratio of initially infected nodes may affect the number
of final infected nodes in a diffusion process.

To study the effect of the initial infection ratio on per-
formance, we test the algorithms on real-world networks
NetSci and DUNF with different initial infection ratios α
(varied from 0.05 to 0.25). For each initial infection ratio,
we simulate 150 diffusion processes on each network (i.e.,
β = 150) with the mean transmission rate µ fixed at 0.3.

Figs. 4–5 report the F-score and running time of each
algorithm on NetSci and DUNF, repectively. From the fig-
ures, we can observe that an increase of initial infection
ratio tends to improve the accuracy of MulTree, but degrades
the accuracy of LIFT and NetRate. SIDN is reasonably
insensitive to variations in the initial infection ratio and
has the best accuracy. Further, an increase in the initial
infection ratio has little effect on the running time of SIDN
and LIFT, but results in longer running time for MulTree
and NetRate. Similar results can also be observed on the
synthetic networks LRF1–15.

5.6 Effect of Transmission Rate
The transmission rates between nodes may affect the cor-
relations between the infections of parent nodes and cor-
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Fig. 6. Effect of Transmission Rate on NetSci

0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Transmission Rate

F
−

sc
or

e

 

 

MulTree
NetRate
LIFT
SIDN

(a) F-score

0.2 0.25 0.3 0.35 0.4

10
0

10
2

10
4

Transmission Rate

R
un

ni
ng

 T
im

e 
(S

ec
on

ds
)

 

 

MulTree
NetRate
LIFT
SIDN

(b) Running Time

Fig. 7. Effect of Transmission Rate on DUNF

responding child nodes. Therefore, the transmission rates
may affect the accuracy of diffusion network inference.
Generally, higher transmission rates are expected to enhance
the correlations between the observed infection statuses
of parent nodes and corresponding child nodes, and they
will likely help the inference algorithms identify influence
relationships between nodes more effectively, resulting in
an accuracy improvement for the algorithms.

To study the effect of the transmission rate on algorithm
performance, we test the algorithms on real-world networks
NetSci and DUNF with different transmission rate settings,
where we vary the mean transmission rate µ from 0.2 to
0.4. For each transmission rate setting, we simulate 150
diffusion processes on each network (i.e., β = 150). In each
simulation, 0.15n nodes are randomly selected as the initial
infected nodes (i.e., α = 0.15).

Figs. 6–7 report the F-score and running time of each
algorithm on NetSci and DUNF, repectively. We can ob-
serve that the accuracy and running time of each algorithm
increase as the transmission rate increases. Further, SIDN
generally achieves the best accuracy, with MulTree slightly
better in one setting and being close for some other settings.
The running times are similar to what is observed in pervi-
ous experiments. It is also noted that similar results can be
observed on synthetic networks LRF1–15.

5.7 Effect of The Number of Diffusion Processes
The inference of a diffusion network is based on the ob-
served results of diffusion processes. Hence, the number
of diffusion processes may affect the accuracy of diffu-
sion network inference. Generally, more diffusion processes
will expose more information about a diffusion network,
and this may help diffusion network inference algorithms
achieve more accurate inference results.

To study the effect of the amount of diffusion processes
on algorithm performance, we test the algorithms on real-
world networks NetSci and DUNF with different number
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Fig. 9. Effect of Number of Diffusion Processes on DUNF

β of diffusion processes (β varies from 50 to 250). In each
diffusion process, we randomly select 0.15n nodes as the
initially infected nodes (α = 0.15), and the mean transmis-
sion rate µ is set to 0.3.

Figs. 8–9 show the F-score and running time of each
algorithm on NetSci and DUNF, repectively. We can observe
that a larger number of diffusion processes often helps
the algorithms achieve more accurate results on network
structure inference. SIDN achieves the best accuracy when
compared with the other algorithms in all but one setting.
To analyze the infection statuses created by more diffusion
processes, the algorithms generally require longer running
time. Compared with MulTree and NetRate, SIDN shows a
significant advantage in terms of running time, while LIFT
has the lowest running time. Similar results can also be
observed on synthetic networks LRF1–15.

5.8 Effect of MI-based Pruning Method
To screen out insignificant candidate parent nodes and
eliminate redundant computations during the influence re-
lationship inferencing, SIDN adopts a MI-based pruning
method, which finds a MI threshold τ for the identification
of insignificant candidate parent nodes.

To study the effect of the MI-based pruning method
on the performance of SIDN, we test SIDN on real-world
networks NetSci and DUNF with different MI thresholds.
Since the running time of SIDN with a MI threshold equal
to 0 (i.e., SIDN without candidate parent node pruning) on
the networks is prohibitively long and beyond acceptable,
we omit to report the corresponding performance results.
We vary the MI threshold from 0.2τ to 2τ , and for each
MI threshold, we simulate 150 diffusion processes on each
network (i.e., β = 150) with 0.15n initially infected nodes
that are randomly selected in each simulation (i.e., α = 0.15)
and the mean transmission rate µ fixed at 0.3.

Fig. 10 reports the F-score and running time of SIDN
with different MI thresholds. We can observe that the MI
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Fig. 10. Effect of MI-based Pruning Method

threshold τ found by the MI-based pruning method is able
to help SIDN achieve a nearly optimal accuracy. When the
MI threshold is less than 0.6τ , the smaller MI threshold the
lower accuracy of SIDN. When the MI threshold is more
than τ , the larger MI threshold the lower accuracy of SIDN.
This is because a smaller MI threshold has a weaker effect
of pruning, and thus leaves more insignificant candidate
parent nodes for parent node selection, causing precision
degradation for SIDN; in contrast, if the MI threshold is too
large, it may screen out the real candidate parent nodes,
resulting in a lower recall for SIDN. Further, compared
with using a small MI threshold less than 0.6τ , using the
MI threshold τ found by the MI-based pruning method
markedly reduces the running time of SIDN. Similar results
can also be observed on synthetic networks LRF1–15.

5.9 Effect of Network Complexity Consideration

To avoid overly complex inferred structures and reduce the
introduction of statistical errors, SIDN adopts a parent node
selection criterion g(vi, Fi) that takes into account network
complexity by using a penalty term λ2|Fi|. A larger penalty
term coefficient λ generally implies less statistical errors but
a more simplified inference result. Based on Corollary 1, we
set the penalty term coefficient λ to log β.

To study the effect of the network complexity consider-
ation in SIDN, we test SIDN on real-world networks NetSci
and DUNF with different penalty term coefficients (varied
from 0 to 8λ). For each penalty term coefficient, we simulate
150 diffusion processes on each network (i.e., β = 150) with
0.15n initially infected nodes that are randomly selected in
each simulation (i.e., α = 0.15) and the mean transmission
rate µ fixed at 0.3.

Fig. 11 reports the F-score and running time of SIDN with
different penalty term coefficients. We can observe that com-
pared with no consideration of network complexity (penalty
term coefficient equal to 0) and an excessive consideration
of network complexity (penalty term coefficient larger than
4λ), a reasonable network complexity consideration with
penalty term coefficient scaling from 0.5λ to 4λ is able to
help SIDN achieve a better accuracy. Moreover, the network
complexity consideration does not significantly affect the
running time of SIDN. Similar results can also be observed
on synthetic networks LRF1–15.

6 CONCLUSION

In this paper, we have investigated the problem of diffusion
network inference without reliance on infection timestamps
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Fig. 11. Effect of Network Complexity Consideration

of nodes. In order to learn the structure, or edges, of
a diffusion network based only on observed final node
infection statuses following a set of diffusion processes,
we have developed a relative entropy-based probabilistic
generative model to find potential influence relationships
that are most likely to have generated the node infection
statuses. Based on the model, we have designed a selection
criterion to find the most probable parent nodes for each
node in the network by taking into account the complexity
of inferred diffusion network structure. Furthermore, we
have presented a heuristic pruning method for candidate
parent nodes that eliminates redundant computations and
improves running time. Extensive experimental results have
verified the effectiveness and efficiency of SIDN.

So far we have applied our SIDN algorithm to infer
influence relationships in diffusion networks with static
structures. To this end, SIDN focuses on the final statuses of
nodes at the end of each diffusion process. Nonetheless, if
the node set or edge set changes over time, it will miss many
intermediate influence relationships and fail to recover a
dynamic diffusion network. For the next stage of study, a
promising direction is to extend our method to handle with
dynamic diffusion networks.
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