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Abstract—χ(3) nonlinearity enables ultrafast femtosecond scale light-to-light coupling and
manipulation of intensity, phase, and frequency. χ(3) nonlinear functionality in micro- and nano-
scale photonic waveguides can potentially replace bulky fiber platforms for many applications. In
this Review, we summarize and comment on the progress on χ(3) nonlinearity in chip-scale photonic
platforms, including several focused hot topics such as broadband and coherent sources in the new bands,
nonlinear pulse shaping, and all-optical signal processing. An outlook of challenges and prospects on
this hot research field is given at the end.

1. INTRODUCTION

The invention of the laser by Maiman in 1960 gave rise to the unprecedented development of the
old subject of optics [1]. As one of the largest branches of optics, nonlinear optics which describes
the interaction between light and matter has attracted countless research efforts. When the medium
whose inner structure is centrosymmetric is exposed to high intensity light, χ(3) nonlinear processes are
the lowest order. This process originates from the electronic polarization caused by the electric-field
component of the light, which can be mathematically given by [2]

P = ε0

(
χ(1) · E + χ(2) : EE + χ(3) ...EEE + . . .

)
(1)

where ε0 is the dielectric constant in vacuum; E is the complex electric-field amplitude; χ(1) is the tensor
of rank 2 which denotes the linear response to E; χ(2) and χ(3) are tensors of ranks 3 and 4 which define
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the second-order and third-order nonlinear responses, respectively. Compared to the χ(2) nonlinearity,
the excitation of χ(3) nonlinearity generally requires higher intensity. χ(3) nonlinearity has much richer
physical dynamics since it is higher order. In this paper, we will be focused on the χ(3) nonlinearity.
Basic effects that relate to the χ(3) nonlinearity include self-phase modulation (SPM), cross-phase
modulation (XPM), third-order harmonic generation, four-wave mixing (FWM), two-photon absorption
(TPA), stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), etc. These effects are
induced by different kinds of light-matter interaction. Figure 1 illustrates the processes of light-matter
interaction. An input field with specific frequency encounters the molecule and then generates a new
field with different frequencies. Taking the nondegenerate FWM as an example, the input frequencies
of ω1 and ω2 can emit two new frequencies of ω3 and ω4. Nevertheless, the energy and momentum are
conserved in this process, which indicates the FWM is a Hamilton process. In contrast, some other
effects, such as SRS and SBS, only obey momentum conservation law but not energy conservation, and
a part of energy is transferred to the mediated phonons.

(a) (b)

Figure 1. (a) Skeptical demonstration of light-matter interaction, and (b) typical process of FWM.

SRS was the first studied nonlinear effects in 1962, soon after the invention of laser [3]. After
that, Maker et al. found that the refractive indexes of liquids are changed with the intensity of input
field [4]. The phenomena of SBS [5] and FWM [6] were observed in 1964 and 1966, respectively. At
that time, most nonlinear effects were studied in bulk media, such as liquids, or gases until emergence
of optical fiber in 1966 [7]. Optical fiber, especially the low-loss fiber, is an ideal waveguide in which
light can directionally propagate. As a result, the light-matter interaction is prolonged in long fibers.
Ippen demonstrated the first Raman laser in CS2-core fiber in early 1970 [8]. A lot of other nonlinear
effects were then discovered in silica fibers such as the SBS [9], FWM [10], SPM [11], and XPM [12].
Understanding these nonlinear effects is very important because it then inspired people to theoretically
[13] and experimentally [14] find temporal optical soliton. Soliton is one of the most important concepts
in nonlinear optics because it stands for an exact balance between SPM and group-velocity dispersion
(GVD). This kind of temporally localized wave packet is similar to the time-domain discrete pulse trains
in a mode-locked laser. Soliton lasers were then widely studied in optical fibers [15] after the advent of
optical solitons. The temporal stability of soliton makes it an ideal tool for communication transmission.
The bandwidth-limited soliton communication system was built up [16] in 1986. A natural question is
what would happen if the exact balance of the soliton is broken? It has been shown that in this case,
other nonlinear phenomena such as dispersive wave [17], soliton fission [18], soliton self-frequency shift
(SSFS) [19] can occur. These nonlinear effects could jointly lead to supercontinuum (SC) generation [20].
The property of SC strongly depends on GVD profiles of the waveguides. Unfortunately, conventional
single-mode fiber (SMF) cannot provide enough flexibility in GVD engineering because the core diameter
of SMF is too large (8 ∼ 10µm) compared with the wavelength which is pumped at the near-infrared
region (NIR). In such waveguides, the material dispersion which locates at the normal dispersion region
is stronger than geometrical dispersion. To compensate the material dispersion, one needs to reduce the
transverse size of SMF to a level that is comparable to pump wavelength. The successful fabrication of
photonic crystal fiber (PCF) in 1995 has solved this problem [21]. The core diameter of PCF can be
engineered to be only 1 ∼ 2µm. The transverse microstructure of PCF can be arranged periodically
over much of the cross-section, which provides another possibility to engineer the dispersion by changing



Progress In Electromagnetics Research, Vol. 170, 2021 19

the transverse size or structure. So far, PCF has many variants, such as photonic-bandgap fibers [22],
holey fibers [23], hole-assisted fibers [24], Bragg fibers [25] and anti-resonant fibers [26]. The materials
which are used to make up PCF are also not limited to SiO2. Gas and liquid with various dispersion
profiles are also employed for specific dispersion design. The abundant selection of constituent materials,
designable transverse size and structure allow PCFs to open many possibilities in the study of nonlinear
optics.

With the rapid development of micro/nano manufacturing technology, waveguide with
subwavelength transverse size becomes possible. Recently, the study of nonlinear optics in the
micro/nano photonic waveguide (MNPW) has attracted broad interest [27]. Different from cylindrical
waveguides such as SMF or PCF, MNPW not only has a smaller transverse size, but also the ability
to integrate with photonic circuits. More importantly, MNPWs have the advantage of low energy
consumption, flexible dispersion engineering, low cost, wide transparent window, and high nonlinear
refractive index. According to the difference in transverse geometrical structure, MNPWs can be
classified as ridge (inverse ridge), strip, channel and slot waveguides. Longitudinally propagating electric
field in MNPWs can be tightly confined within a rather small area due to the higher refractive index
contrast. For example, the refractive index contrast of SMF is almost 100 times smaller than that of a
silicon-on-insulator (SOI) waveguide. The effective mode area Aeff of MNPW is much smaller, which
results in the enhanced light-matter interaction [28]. The nonlinear coefficient γ = 2πn2/(λAeff ) is thus
increased, where n2 is the nonlinear refractive index. While the optical field propagating in SMFs is
restricted to the core layer, any desired propagating layer can be achieved for MNPWs by the structure
design. While the linear loss of MNPW is much larger than that of fibers, the waveguide length required
by nonlinear effects is much shorter due to the large γ. Additionally, the linear loss of MNPWs can be
mitigated with proper fabrication [29].

Figure 2 schematically shows the cross sections of typical MNPW waveguides. In contrast to
the fiber-based waveguides, the flexible dispersion engineering of MNPWs is reflected in the diversity
of transverse geometries with smaller scale down to sub-micrometers and nanometers levels. The
dimensions of a microring is also shown in comparison with a coin. The transverse profile of MNPWs
including ridge, strip, channel, and slot in Figure 2 means that it cannot be fabricated by simply tapering
the preformed bar as for SMFs and PCFs. Techniques of micro/nano fabrication must be employed
including the thermal oxidation, sputtering, chemical vapor deposition, flame hydrolysis deposition,
ion-assisted deposition, spin-coating, sol-gel technique, etc. [30].

(a) (b)

(c) (d)

Figure 2. Schematic diagram (left panel) and SEM (right panel) of (a) a ridge MNPW, (b) a strip
MNPW, (c) a buried MNPW and (d) a slot MNPW. (e) Microring chips together with 1-cent coin for
size comparison, and (f) MNPWs integrated on a 12-inch Si wafer.

Typical χ(3) nonlinear effects observed in SMFs or PCFs have also been found in MNPWs. For
instance, Si waveguides have demonstrated SPM and XPM effects [31, 32]. However, compared with
cylindrical waveguides, larger linear loss in MNPWs lowered the efficient of SPM and XPM effects. Si
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exhibits strong TPA and free-carrier absorption (FCA) at the telecom band [33]. Nonlinear absorptions
can be explained by band-gap energy whose half value is smaller than the energy of a single photon
at telecom band. As a result, two photons are absorbed for atomic transition. Although TPA effect
can be utilized in pulse compressor [34], detector [35] and spectroscopy [36], it degrades the nonlinear
efficiency. To avoid this, one method is shifting the pump wavelength from the telecom to mid-infrared
region (MIR) to decrease the photon energy. Another method is to use alternative larger bandgap
materials such as chalcogenide, highly doped silica, and Si3N4 waveguides which show negligible TPA
or FCA at telecom band due to the larger band-gap [37]. The χ(3) nonlinearity of silica fibers is
essentially determined by the optical properties of SiO2. Instead, a MNPW which could be made up by
hybrid material ensembles such as Group IV and III-V elements offers versatile nonlinear functionalities.
An additional advantage of Si-based MNPWs is the compatibility with complementary metal oxide
semiconductor (CMOS) technology, which allows for inclusion in integratable photonic circuits. The
application of Group IV elements in nonlinear optics has been reported, including the Si [38], Ge [39],
SiGe alloy [40, 41], and Si3N4-based MNPWs [42]. For example, Kerr microcomb can be generated
efficiently in miniaturized platforms such as Si3N4 microresonators [43–45]. Chalcogenide waveguides
were also extensively studied because of its large nonlinear refractive index, broadband transparency
and excellent thermal stability [46]. It has been used in the all-optical wavelength conversion [47], SC
generation [48], and SPM effect [49]. The MNPWs based on III-V elements are also good candidates
for nonlinear optics because of their large nonlinearity and broadband transparent window up to 20µm.
The devices based on III-V elements allow for electro-optic control. Among them, AlGaAs [50–52],
GaInP [53], AlN [54], and GaN [55] have been widely studied. For example, octave-spanning coherent
SC [56] and ultra-efficient frequency comb [57] could be experimentally generated in AlGaAs-on-insulator
waveguides and microresonators, respectively.

In this review, we will focus on three hot topics built upon χ(3) nonlinearity. The first is the
development of coherent and broadband sources generation in the new bands presented in Section 2. It
includes the SC and SC-based frequency comb generation, Kerr microcombs generation, and intermodal
FWM. The second topic is the passive pulse shaping technique by means of χ(3) nonlinearity, which will
be presented in Section 3. Passive pulse shaping includes ultrashort pulse compression (PC), spectral
compression (SPC), and parabolic pulse (PP) generation. Finally, Section 4 will cover the application of
χ(3) nonlinearity in all-optical signal processing. The progress on techniques such as all-optical analogy-
digital conversion (ADC), logic gate, and radio frequency photonics on MNPWs will be reviewed in
detail.

2. COHERENT AND BROADBAND SOURCES OPENED UP IN THE NEW BANDS

Invention and development of coherent sources in the near-infrared bands have led to revolutionary
breakthrough in communications, biomedical science, high field physics, attosecond science, precision
frequency metrology, etc. Building upon the remarkable success in the near-infrared band, the focus
has naturally shifted to other new bands of light wave, i.e., the MIR region (2.5 ∼ 25µm) known as
“fingerprint” region of molecular with also two atmospheric transparent windows (3.5 ∼ 5µm and 8 ∼
14µm) beneficial for remote sensing and Lidar, the visible region (VR) (0.39 ∼ 0.78µm) for underwater
optical communication and illumination, and even ultraviolet region (UVR) (0.01 ∼ 0.39µm) for
biomedicine. Figure 3 shows the optical spectrum ranges from UVR to MIR and typical applications
at the new bands. Unfortunately, gain media in these new bands is very rare or even nonexistent.
Moreover, the bandwidth of known gain media is rather narrow. For example, the gain bandwidths of
Yb-doped and Er-doped mediums are only tens of nanometers with the center wavelengths of 1064 and
1550 nm, respectively. The gain media working in the MIR region are limited within 1.8 to 3.5µm, as
shown in Figure 3. There is no known gain media in VR, UVR, and deep MIR regions, meaning the
sources in these new bands cannot be obtained by conventional lasing technology. In order to obtain
the coherent sources at these gain-limited regions, one has to resort to the frequency conversion outside
a laser cavity. Harnessing nonlinear frequency conversion to transfer frequency components from the
well-developed bands becomes the only option.

Compared to the χ(2)-based nonlinearity such as sum and difference frequency generation, χ(3)-
based nonlinearity, usually associated with soliton dynamics, is generally superior in conversion efficiency
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Figure 3. Optical spectrum ranging from UVR to MIR with the corresponding applications in the new
bands, and the indication of existing bands with gain mediums.

(a)

(b)

(c)

Figure 4. Schematic diagrams for the geneation of SC, Kerr microcombs, and intermodal FWM in
chip-scale photonic platforms.

and achievable bandwidth. The schematic diagrams of these techniques are shown in Figure 4.
Specifically, the techniques to be focused include SC generation, Kerr microcomb generation, and
intermodal FWM. It has been proved that the spectral properties like bandwidth, intensity, as well
as coherence can be completely manipulated by tailoring the dispersion and nonlinearity of MNPWs.

SC generation will occur when a strong continuous or pulse source passes through a nonlinear
medium. Due to the interaction between linear dispersion and nonlinear effects (such as SPM, XPM,
SRS, FWM, MI, soliton fission, self-steepening, etc.), new frequency components are generated to
expand the input spectrum. This makes materials with large nonlinear coefficients and wide transparent
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window desirable. Soliton pulse pumping in the anomalous dispersion region is usually used for
ultra-broadband SC generation because the associated soliton fission significantly helps the spectrum
broadening. To guarantee a high degree of coherence of spectrum, the pulse width of soliton should
be shortened to hundreds of femtoseconds (better < 100 fs) to construct the scenario of soliton fission
dominating the MI effect. Through reasonable dispersion engineering and pump condition selecting, SC
could cover from UVR to MIR by more than one octave along with high degree of coherence.

For the generation of Kerr microcomb, high finesse optical microresonator continuously driven by
a continuous-wave (CW) pump laser is typically employed. Although pulse driving methods are also
available, a CW source is sufficient. This is much different from SC generation in straight MNPWs via
injection of pulse with high peak power [58]. Hyper-parametric oscillation (also called cascaded FWM)
arises through Kerr nonlinearity and determines broadband frequency combs generation. By scanning
either pump frequency or cavity resonance to achieve an effective red-detuned condition, multi-states,
e.g., MI, chaotic, and even dissipative Kerr soliton (solitons superimpose on a CW background) states
can be achieved. The stable soliton state is what one desires in Kerr microcombs. In particular, the
single soliton microcomb shows temporally near few-cycle pulse, broadband and smooth hyperbolic
secant shape spectrum in the frequency domain. The coherence of spectrum can be well maintained in
this scenario. Nevertheless, several disadvantages including thermal noise destabilization and difficulties
in fabricating ultrahigh Q-factor microresonators still wait for better solutions.

In contrast to conventional intramodal FWM that occurs amongst all photons in the same mode,
intermodal FWM occurs among all photons in different modes. While the former one has been
extensively studied, the latter one has been studied rarely. As most materials have normal dispersion
in UVR, VR, or deep MIR, it is impossible to achieve phase matching in these bands for conventional
intramodal FWM. In this sense, intermodal FWM in which phase matching condition among different
modes does not restricted in anomalous dispersion regime is an excellent alternative. Moreover, while the
maximum efficiency of intramodal FWM is achieved near the pump wavelength, the one of intermodal
FWM could be achieved far away from the pump wavelength, meaning a broadband range can be
reached. Intermodal FWM not only has the advantages in phase matching, but also possesses higher
flexibility and better spectral conversion efficiency.

2.1. Supercontinuum and Frequency Comb Generation

Supercontinuum sources are desirable because of their ability in maintaining high spectral brightness in
a broad spectral range. SC is particularly exciting for optical metrology, microscopy, optical frequency
synthesis, optical coherence tomography, molecular spectroscopy, biomedical science, etc. [59].

Mathematically, SC generation is governed by the generalized nonlinear Schrödinger equation
(GNLSE) under the slow varying envelope approximation. For the operation bands in which the half
band-gap of nonlinear material is below the photon energy, nonlinear multi-photon absorption (MPA)
has to be considered. In addition, for specific semiconductor materials like Si, free carrier induced
attenuation (FCA) and dispersion (FCD) also have to be considered. The modified GNLSE is given
by [60],

uz (z, T ) = −1
2

(α + αFCA)u +
iω0nFCD

c
u +

∑
k≥2

ik+1 1
k!

βku
(k)
T

+

(
iγ −

4∑
n=2

1
n

A
−(n−1)
eff βnPA |u|2(n−2)

)
× (1 + iτs∂T )

×
[
u (z, T )

∫ ∞

0
R (t) |u (z, T − t)|2 dt

]
(2)

where u(z, T ) is the envelope of electric field, α the linear loss, and βk the k-th order dispersion
coefficient related to the Taylor series expansion of propagation constant β(ω) at the center frequency
ω0. γ is the nonlinear coefficient, τs = 1/ω0 the optical shock time connecting with the self-steepening
effect, and R(t) the Raman response function. Among them, βnPA represents the n-photon absorption
coefficient, and the refractive index changes caused by FCA and FCD are expressed as αFCA = σNc

and nFCD = ζNc, respectively. The free carrier coefficients connected with the waveguide materials
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are represented as σ and ζ, and Nc is the free carrier density. The performance of SC is evaluated
by measuring the spectral bandwidth and coherence. Highly coherent SC sources are of significant
interest for precision spectroscopy, high resolution optical tomography, Raman spectroscopy, etc. These
applications demand the low phase fluctuation of spectrum and broad bandwidth. Mathematically, the
interpulse coherence is calculated by [61],

g
(1)
12 (λ, t1 − t2) =

∣∣∣∣∣∣∣∣
〈u∗

i (λ, t1) uj (λ, t2)〉i�=j√〈
|ui (λ, t1)|2

〉〈
|uj (λ, t2)|2

〉
∣∣∣∣∣∣∣∣

(3)

where u(λ) stands for the amplitude of SC in the frequency domain, and the subscripts i and j represent
the pulses at different time slots of t1 and t2 inside a pulse train, respectively. The expressions in the
angle bracket represent the statistical average of a certain number of shot-to-shot SC pairs with power
and phase noises. Different from the interpulse coherence that describes spectral phase fluctuation of
a pulse train, the recently developed intrapulse coherence provides a method to measure the spectral
phase fluctuation of a single pulse. The intrapulse coherence is given by [62]

Γ =

∣∣〈u2
i (2λ) u∗

i (λ)
〉∣∣〈∣∣u2

i (2λ) u∗
i (λ)

∣∣〉 . (4)

Equation (4) measures the fluctuation of spectral phase difference between a spectral component and
its doubling-frequency counterpart. This intrapulse coherence directly estimates the quality of f − 2f
self-referencing product, which can be used to control the carrier-envelope offset (fCEO). It has been
numerically proved that a SC source with excellent interpulse coherence might has a poor intrapulse
coherence [63].

Coherent UVR to VR SC generation has been reported in silica ridge waveguides. Different from
fiber platforms, the silica waveguide arrays provide a wide range of emission wavelength choices on
a single and compact chip. Oh et al. experimentally demonstrated efficient and coherent dispersive
wave generation from UVR to VR in silica waveguides with pumping wavelength of 830 nm [64]. The
waveguide array structure and experimental results are shown in Figure 5.

Coherent SC generation can be extended from VR to NIR in various nonlinear materials. In
2019, Liu et al. experimentally generated a VR to NIR SC spanning from 600 to 1050 nm in AlN
waveguides [65]. Lafforgue et al. experimentally exploited nitrogen-rich Si3N4 waveguides to generate
an octave SC spanning from 400 to 1600 nm [66]. Numerical simulations indicated high interpulse
coherence of generated SC. If the pump pulse is shorter than 100 fs [59, 67], generated SC would have
high interpulse coherence. This conclusion has been confirmed by some experiments operating in the NIR
region. For example, Johnson et al. demonstrated the SC generation spanning more than 1.4 octaves in
a Si3N4 waveguide using sub-100-fs pulses at 1µm pumping wavelength [68]. A spectral interferometer
was used to verify the high degree of interpulse coherence over the majority of spectral bandwidth. In
2017, Okawachi et al. demonstrated a novel approach to produce coherent and directional SC by using
cascaded dispersive waves [69]. The scheme is achieved by dispersion engineering in Si3N4 waveguides
pumped at 1050, 1300 and 1400 nm, respectively. By performing direct detection of the carrier-
envelope-offset frequency of femtosecond pump source using an f − 2f interferometer, the coherence
properties of generated SC are experimentally confirmed. Different from previous works conducted on
SiO2, Si or Si3N4 platforms, Kuyken et al. recently demonstrated SC generation on the AlGaAs-on-
insulator platform [70]. The pumped wavelength is located at telecom wavelengths (1555 nm). Superior
interpulse coherence within 1450–1750 nm is experimentally validated. Chalcogenide is another suitable
substitute for SC generation in the NIR. For instance, Tremblay et al. fabricated low propagation
loss Ge23Sb7S70 waveguides (0.56 dB/cm) in a wafer scale process [71]. By careful engineering of the
waveguide dispersion, coherent and octave-spanning SC pumped at 1.55µm with picojoule-level energy
is generated. Dave et al. demonstrated the generation of an octave-spanning SC in III-V membrane
waveguides on a Si substrate [72]. The waveguide is pumped by a 1550-nm femtosecond source, and the
generated SC is measured to be highly coherent.

MIR coherent and broadband SC generation is another hot topic due to its rich application in trace
gas sensing, LIDAR, biomedical imaging, etc. In 2018, Singh et al. demonstrated octave-spanning and
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(a)

(b) (c)

(d)

(e)

Figure 5. Phase matching condition and direct observation of dispersive wave generation in silica ridge
waveguides. (a), (b) SEM images of an array of silica ridge waveguides on a Si chip. The red box in
(a) contains a silica waveguide whose cross section is shown in (b); the cross section is superimposed
with the calculated mode profile of the TM mode at a wavelength of 830nm. (c) Calculated mode area
and zero dispersion wavelength are plotted as the ridge base width varies. (d) Calculated GVD (dashed
lines) and phase-matching parameter (solid lines) for dispersive wave generation in TM polarization are
plotted as the wavelength varies. Blue, red, and yellow solid and dashed lines correspond to mode areas
of 0.83, 1.03, 1.69 mm2, respectively. (e) UVR-VR dispersive wave generation in a Si chip containing
an array of waveguides with varying mode area [64]. Copyright 2017 Nature Publishing Group.

coherent SC generation in SOI from 1.06 µm to beyond 2.4 µm [73]. The coherence of generated SC is
measured to be more than an octave. Suspended waveguide structures are promising for deep-MIR SC
generation because there is an air gap as the buffer layer between light-guiding region and substrate.
As a result, strong mode confinement eliminates mode-leaking loss, and the limitation of transparency
window caused by substrate material can be overcome. So far, suspended MNPWs on several material
platforms with air gap have been fabricated and utilized for deep-MIR SC generation. For example,
Kou et al. experimentally used a suspended rib Si waveguide to achieve a broadband SC spanning from
2 to 5µm in 2018 [74]. Chiles et al. demonstrated a 2.3 ∼ 6.5µm broadband SC by using a suspended
AlGaAs waveguide [75] in 2019. At the same year, Nader et al. achieved an ultra-broadband SC spanning
from 2 to 8 µm by using a suspended Si waveguide [76]. The deeply extended SC source was successfully
utilized for on-chip dual comb spectroscopy. Figure 6 shows several fabricated suspended platforms for
deep-MIR SC generation. MIR SC generation on MNPWs that are not suspended was also reported.
The spectral extension in this scenario is mainly limited by the transparency of the substrate. In
2014, Lau et al. experimentally demonstrated coherent octave-spanning MIR SC generation in Si-based
MNPWs [77]. They also numerically showed that MPA and FCA are not detrimental to SC generation
in the MIR region. In 2016, Xie et al. demonstrated a more than 1.5 octave-spanning and coherent
MIR SC covering 1.5 to 3.6 µm by pumping a so-called As2S3-silica “double-nanospike” waveguide [78].
In 2018, Sinobad et al. demonstrated an octave SC generation on a Si0.6Ge0.4 waveguide [79]. The
spectrum of the SC generated covered from 3 to 8.5 µm, almost reaching the limit of Si transparency.
In 2019, Sinobad et al. demonstrated coherent and an octave-spanning broad MIR SC generation on
an air-cladded SiGe-on-Si waveguide [80]. At the extreme ends of spectrum, high spectral density and
coherence can be obtained after dispersion engineering. Theoretical works also contributed to the design
and manipulation of deep-MIR SC generation targeted at suspended MNPWs. For example, Yang et
al. numerically utilized 700-fs pump pulses with a low peak power of 400 W to pump a suspended Ge-
on-Si waveguide at 6.57 µm wavelength [81]. The SC generated was confirmed to span from 2 to 12 µm
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(a) (b) (c)

(d)

Figure 6. (a) (b) (c) SEM images of suspended waveguides from [74–76], respectively. (d) SCs when
the pump wavelength is 3060 nm, experimentally measured spectra with different waveguide-coupled
pulse energies (solid curves), and simulated spectrum at 45 pJ waveguide-coupled pulse energy (dotted
curve), with a trace-to-trace offset of 30 dB [75]. Copyright 2018 & 2019 OSA.

with excellent coherence in the whole spectrum range. In 2017, Yuan et al. numerically studied SC
generation in a 4-mm-long suspended Ge-membrane ridge waveguide pumped by a 180-fs pulse of peak
power of 800 W and central wavelength of 4.8µm [82]. Generation of coherent and ultra-broadband
MIR SC spanning from 1.96 to 12 µm is studied. In 2018, Jing et al. numerically studied coherent
and broadband SC generation in a 3.1-mm-long suspended As2S3 ridge waveguide pumped by a pulse
source with a peak power of 450 W [83]. The generated SC covers from 1.0 to 5.6 µm. In 2019, Cheng
et al. numerically studied the combination of self-similar PC and coherent SC generation in a specially
designed suspended Si waveguide tapers [84]. Simulation results showed that a 1-ps pulse was perfectly
compressed to 47.06 fs first, and then used for highly coherent and broadband MIR SC generation. In
2019, Li et al. numerically studied multi-octave MIR SC and frequency comb generation in a suspended
As2Se3 ridge waveguide [85]. The generated SC spectrum could cover 1.76 ∼ 14.42µm (more than three
octaves) and had excellent coherence. In 2020, Lai et al. numerically designed a T-type Ge waveguide
with the all-normal dispersion profile for MIR SC and frequency comb generation [86].

Some recent works show that ultrabroad SC that covers multi-bands from UVR to MIR can be
generated by dispersive wave assistance in specially designed MNPWs. In 2019, Yu et al. experimentally
demonstrated coherent two-octave SC generation covering 400 ∼ 2400 nm in a 0.5-cm-long x-cut nano-
LiNbO3 waveguide with only 100-picojoule-level pump energy [87]. This system also supports SHG
generation at 750 nm, which enables directly f − 2f self-referencing detection on single waveguide. In
2020, Lu et al. experimentally demonstrated ultra-broadband SC generation from UVR to MIR in single-
crystalline AlN waveguides [88]. Subsequent numerical simulations indicated a high degree of coherence
of generated SC around the telecom pump and two dispersive waves. The reported SC generation on
different platforms in the new bands are summarized in Figure 7. We note the suspended structures are
promising for MIR SC generation, especially in the deep MIR region (> 4µm). This is because not only
the loss induced by the mode-leakage is eliminated, but also the core-cladding refractive index contrast
is enhanced which leads to smaller mode area and stronger nonlinear interaction. The core layer of a
suspended waveguide is typically a ridge structure, which enables array of holes on the ridge arms for
wet-etching of substrate. A core layer of strip structure is also feasible because the suspension can be
fabricated as pillar structure. The slot and multi-layer hybrid structures generally lead to flattened
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Figure 7. Reported SC generation on different platforms in the new bands. The grey dashed lines
indicate the transparent windows of different materials. Experimental studies are marked with ‘*’.

dispersion with multiple zero-dispersion wavelengths, which is beneficial to broadband SC generation.
Optical frequency comb refers to a coherent source composed of discrete frequency lines with equal

frequency interval. Frequency comb sources have found many applications in the fields of metrology,
optical, atomic clocks, and high precision spectroscopy. While traditional laser-based frequency comb
can be highly coherent, the spectral width is restricted by the gain bandwidth and is rather narrow.
SC relates to frequency comb due to the development of f − 2f self-referencing technique. The fCEO of
a frequency comb can be detected and locked by this technique when the spectrum is octave spanning.
This is crucial because most applications like metrology and spectroscopy require absolute frequency
accuracy. Pumped by a repetition-rate (frep) stabilized femtosecond pulse train, the generated SC
can be seen as a broad frequency comb with comb line interval equaling to frep. The fCEO of
generated octave-spanning SC can be locked by f − 2f technique, which makes SC an ultra-broadband
frequency comb source. Experimental results of SC-based optical frequency combs on MNPWs have also
been reported. Kuyken et al. experimentally demonstrated an octave-spanning MIR frequency comb
generated on a Si nanowire waveguide [108]. The phase-coherent frequency comb was generated with
a −30 dB spectrum spanning from 1540 up to 3200 nm, and with coupled pump pulse energy as low
as 16 pJ. Carlson et al. demonstrated self-referenced and efficient frequency comb on Si3N4 waveguide.
Compared with conventional approaches that using highly nonlinear fibers, the average power is found
to be approximately 10 fold lower [109]. Lee et al. experimentally achieved coherent SC generation in
a nanospike chalcogenide-silica hybrid waveguide with pump pulse at 2µm wavelength. The generated
SC enables coherent locking of OPO to the optically referenced pump frequency comb, which results in
a composite frequency comb with spectrum spanning 1 ∼ 6µm [110].

Dispersive wave generation is another efficient method to achieve broadband optical frequency comb
in new bands. Dispersive waves are less technologically flexible but more easily achieved than SC, as long
as the perturbation of high-order dispersion is considerable. The spectrum of dispersive wave is localized
and directional, which avoids energy waste in unwanted frequencies. The central frequency as well as the
conversion efficiency of dispersive wave is tunable by tailoring the dispersion of waveguides. Of note, the
coherence of pump source can be perfectly inherited by dispersive wave regardless of noise perturbation.
Experimentally, in 2018, Guo et al. used a Si3N4 nanowire pumped by a 1.55 µm erbium-doped fiber-
based femtosecond laser frequency comb to directly generate a MIR dispersive wave frequency comb
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(a)

(b)

(c) (d)

Figure 8. (a) Schematic diagram of the MIR dual-comb gas-phase spectroscopy, in which two
MIR frequency combs are generated via coherent supercontinuum process in nanophotonic chip-based
Si3N4 waveguides, seeded by a mutually locked dual-frequency-comb source at the telecom-band (i.e.,
∼ 1550 nm). HWP, half-wave plate; PD, (MIR) photodetector. (b) Microscopic pictures of a photonic
chip with coupled Si3N4 waveguides, corresponding to both the input section, where the beginning
of the waveguide contains an inverse taper structure, and the output section has dual-core waveguide
structures. The false-colored SEM image of the waveguide cross section is also presented. (c) Calculated
effective refractive indices of symmetric (purple curve) and anti-symmetric (orange curve) modes in
a dual-core Si3N4 waveguide, compared with initial uncoupled modes separated in each core. (d)
Experimentally observed supercontinuum generation in a dual-core Si3N4 waveguide [112]. Copyright
2020 OSA.

covering from 2.5 to 4 µm [111]. To realize the phase match between dispersive and pump waves, the
integrated dispersion βint should be zero. However, it is a little regretful that the conversion efficiency
was only around 1%. In 2020, the same group experimentally obtained MIR dual-comb spectroscopy
based on dispersive wave generation in dual-core Si3N4 nanowires [112]. Figure 8 shows the schematic
diagram of the MIR dual-comb spectroscopy, the microscopic and SEM pictures of the dual-core Si3N4

waveguide, and the experimental results of the MIR dispersive wave. Two fully stabilized femtosecond
laser frequency combs (Menlo comb system, frep ∼ 250 MHz) with slight repetition rate difference
(Δfrep ≈ 320 Hz) were used as the two pump seeds. The bandwidth of their dual-comb spectrometer
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covers the functional group region from 2800 to 3600 cm−1, including more than 100,000 comb lines.
The excellent performance enables quick and parallel gas-phase detection with a high sensitivity and
sub-Doppler spectral resolution. In 2019, Grassani et al. experimentally demonstrated MIR dispersive
wave tunable within 3 ∼ 4µm by pumping the specially designed “top-hat” Si3N4 nanowires with a
2µm fiber laser source [113]. A record-high conversion efficiency of 35% was achieved. The MIR source
generated was successfully used for detection of C2H2 by absorption spectroscopy. On the same Si3N4

platform, in 2020, Tagkoudi et al. experimentally broadened the reachable spectral range of dispersive
wave through careful optimization [114]. As a result, the dispersive wave can span the entire 3 ∼ 3.5µm
window without losing conversion efficiency. Table 1 summarizes the optical characteristics of different
materials for chip-scale platform as a comparison.

Table 1. Optical characteristics of different materials for chip-scale platform.

Material
Bandgap

(eV)

βTPA (m/W)

& cut-off λ

β3PA (m3/W2)

& cut-off λ
n

n2

(m2/W)
α (dB/cm) Refs.

Si 1.1
5 × 10−12

& 2.2 µm

2 × 10−27

(@2.6 µm)

& 4.3 µm

3.47 6 × 10−18 3.4 [89–91]

a-Si:H 1.7
7 × 10−12

& 2.15 µm
/ 3.73 1.7 × 10−17 2.1 [89, 92]

Ge 0.8

6 × 10−10

(@2.8 µm)

& 2.83 µm

5 × 10−27

(@4.8 µm)

& 5.2 µm

4.3 (@

3.2 µm)

4.4 × 10−17

(@3.2 µm)
2 [89, 90]

Si0.6Ge0.4 1.0

5 × 10−12

(@2.05 µm)

& 2.4 µm

2 × 10−27

(@3.2 µm)

& 4.3 µm

3.59
1.5 × 10−18

(@4µm)
1.1 (@4 µm) [90, 93]

SiO2 9.0 / / 1.46 2.6 × 10−20 / [94]

Si3N4 5.3 / / 1.98 2.5 × 10−19 0.5 [95, 96]

SiC 3.26 / / 2.6 8 × 10−18 12.8 [97]

AlN 6.2 / / 2.1 2.3 × 10−19 0.6 [98]

Ta2O5 4.4 / / 2.05 7.2 × 10−19 1.5 [99]

TiO2 3.1 / / 2.4 3.6 × 10−18 5 [100]

Diamond 5.5 / / 2.4 8.2 × 10−20 0.34 [101]

AlGaAs 1.72 5 × 10−13 / 3.3 2.6 × 10−17 1.3 [102, 103]

LiNbO3 3.8 / / 2.21 2.5 × 10−19 0.027 [89, 104]

As2S3 2.26 6.2 × 10−15 / 2.43 3.8 × 10−18 0.05 [89, 160]

As2Se3 1.77 1.4 × 10−12 / 2.81 2.4 × 10−17 1.4 [105, 106]

Doped silica / / / 1.7 1.15 × 10−19 0.06 [89, 107]

Note: The parameters without specification are values at 1.55 µm.

2.2. Kerr Microcombs Generation

Generation of Kerr microcombs on chip-scale optical microresonators is a robust and competitive
technique for coherent sources generation in the new bands. It facilitates ultra-compact size to satisfy
out-of-the-lab applications and shows explosive development in the last decade. Microresonators made
of χ(3) nonlinear materials, such as silica, highly doped silica, Si3N4, MgF2, AlN [115], etc. can have high
quality factor. Although Kerr microcombs generation has revolutionized the fields in the near-infrared
band, such as terabit optical coherent communication, dual-comb spectroscopy, ultrafast ranging, atomic
clocks, optical synthesis, etc. [116], it is still not widely developed in MIR, UVR, and VR bands.
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When a CW pump field uin with a center frequency of ω0 is coherently injected into the cavity
through a coupler, the boundary condition of the intracavity field uin at the beginning of m + 1 round
trip is related to that at the end of the m round trip, which is described by the iteration step of Ikeda
map as [117, 118],

um+1 (0, T ) = θ
1
2 uin + (1 − θ)

1
2 um (L, T ) eiφ0 (5)

where T represents the retarded time scale in one roundtrip, θ the power coupling coefficient of coupler,
L the roundtrip length of cavity, and φ0 the linear phase accumulation of the field inside the cavity per
roundtrip. In each roundtrip, the evolution of u(z, T ) |Lz=0 is obtained by a GNLSE governed propagation
model, as given by,

u (z, T )z = −1
2
αu + i

∑
k≥2

ik
1
k!

βku
(k)
T + iγ (1 + iτs∂T ) |u|2 u (6)

where z indicates the propagation distance, and τs indicates the optical shock time. For high finesse
resonators, Eqs. (5) and (6) can be averaged to a mean-field Lugiato-Lefever equation (LLE) [119],

tRut (t, T ) = θ
1
2 uin − 1

2
(αL + θ)u + i

⎡
⎣L
∑
k≥2

ik
1
k!

βk∂
(k)
T + γL (1 + iτs∂T ) |u|2 − δ0

⎤
⎦u (7)

where tR stands for the round-trip time, and t represents the slow time variable. Strictly, this equation
is only valid when t is equal to an integer multiple of tR. The fast time T scales for the duration of
temporal waveform in the resonator. The phase detuning of pump field with respect to the closest
resonance peak with order l is expressed as the cavity phase detuning δ0 = 2πl − φ0. In addition, if
the microresonator is made of materials like Si, the general LLE should be modified to include the free
carrier and multi-photon absorption effects [120, 121],

tRut (t, T ) = θ
1
2 uin −

(
1
2
αL +

1
2
θ + iδ0

)
u +

⎡
⎣iL

∑
k≥2

ik

k!
βk∂

(k)
T − αFCA

2
+

i

c
ω0nFCD

⎤
⎦u

+

(
iγL − L

4∑
n=2

1
n

A
−(n−1)
eff βnPA |u|2(n−2)

)
× (1 + iτs∂T )

×
⎡
⎣u (t, T )

∞∫
0

R (η) |u (t, T − η)|2 dη

⎤
⎦ (8)

For Kerr microcombs generation in the VR region, in 2014, Jung et al. experimentally proposed a method
with high-Q AlN microring resonator pumped by a telecom CW laser [115]. The Kerr microcomb at
the telecom band was generated first, and then used to generate comb-like spectrum at the VR region
through the second harmonic, third harmonic, and sum frequency conversion in the same AlN microring.
Similarly, in 2018, Liu et al. experimentally utilized an AlN microring to obtain near-VR comb lines in
720 ∼ 840 nm from a NIR microcombs through spectral translation [122]. The conversion efficiency is
as low as 4.1 × 10−5%. In 2016, Wang et al. experimentally demonstrated green-light frequency comb
generation in high-Q Si3N4 microring resonators with a conversion efficiency of only 0.04% [123]. The
nonlinear processes in this experiment involve third harmonic generation and third-order sum frequency
generation, which allows the conversion of NIR frequency combs into green light region. By using a high-
Q AlN microring, Guo et al. achieved near VR region Kerr microcombs in 2018 with a high conversion
efficiency of 22% [124].

In the NIR region, silica and Si3N4 are the most efficient materials for chip-scale Kerr microcomb
generation. For example, Si3N4 simultaneously possesses relative high Kerr nonlinearity (typically
∼ 0.9 W−1/m), low loss (typically ∼ 0.2 dB/cm), no photon-absorption, and mature fabrication
technology compatible with the CMOS foundry. In 2017, Lee et al. experimentally achieved soliton
microcombs around 778 and 1064 nm with an on-chip high-Q silica edge microresonator [125]. In
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2019, Raja et al. experimentally coupled an III-V-material-based laser diode chip to a high-Q Si3N4

microresonator [126]. With an average power less than 1 W, a soliton microcomb with sub-100-GHz line
spacing has been obtained with pump wavelength around 1540 nm. In 2020, Briles et al. experimentally
utilized the Si3N4 microresonators to comprehensively study low-power octave-spanning single soliton
Kerr microcombs generation in both the 1550 nm and 1064 nm bands [127]. In the same year, Fujii et
al. experimentally demonstrated that by engineering the sidewall angle of a small-radius (∼ 100µm),
3-µm-thick silica wedge microdisk, dispersion tuning in both normal and anomalous regimes can be
realized without significantly affecting the free spectral range [128]. The designed microdisk with a
wedge angle of 55◦ was used to generate a 300 nm wide Kerr microcomb in the anomalous dispersion
region under pump wavelength around 1550 nm.

In the MIR region, Group IV elements are employed to fabricate the microresonators because their
broad transparent windows and negligible nonlinear photon-absorptions in this region. Silicon-based
or germanium-based microresonators are promising platforms for MIR Kerr microcombs generation.
In 2016, Yu et al. experimentally generated a mode-locked soliton Kerr microcomb in the MIR region
covering the spectral range from 2.4 to 4.3 µm [129]. It was found that up to 40% of pump energy
was converted to the output comb power. Two years later, in 2018, the same group experimentally
demonstrated MIR dual-comb spectroscopy on a SOI microring platform [130]. Figure 9 shows the
experimental setup, dual-comb generation, and dual-comb spectroscopy results. A single CW pump
source with power as low as 80 mW was used to generate two coherent Kerr microcombs covering
2.6 ∼ 4.1µm in two Si microrings with slightly different free spectral range (FSR). The pump-to-comb
conversion efficiencies of two microcombs are found to be both > 30%. Although the microcombs
generated are multi-soliton state, the dual-comb spectroscopy could still acquire spectra of acetone at
127 GHz (4.2 cm−1) resolution. They further demonstrated high-throughput label-free MIR dual-comb

(a)

(b) (c)

Figure 9. (a) Experimental setup for dual-comb absorption spectroscopy. (b) Spectra of each mode-
locked comb (multi-soliton states) and combined M-FT spectrum. (c) RF spectrum from the dual-comb
interferometer [130]. Copyright 2018 Nature Publishing Group.
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spectroscopy based on Kerr microcombs in Si microfluidic microresonators. The label-free spectroscopy
gives a direct detection of targeted molecular regardless of fluorescent labeling. The flow dynamics of
an acetone droplet was successfully measured with a high spectral acquisition rate of 25 kHz (40µs per
spectrum, comparable to the state-of-art Michelson based Fourier-transform infrared spectrometer)
covering a spectral range from 2900 to 2990 nm [131]. The mitigation of intracavity stimulated
Raman scattering when the pump wavelength is shifted to 2µm band eliminates the Raman–Kerr
comb competition, thus facilitating soliton microcombs generation. Gong et al. experimentally generate
microcombs around 2µm in a high-Q z-cut nano-LiNbO3 microring [132]. This is the first experimental
demonstration of MIR single soliton Kerr microcomb generation on nano-LiNbO3 platform.

In the respect of theoretical works, in 2018, Guo et al. numerically obtained an octave-spanning
Kerr microcombs in a germanium (Ge) microresonator covered from 2.3 to 10.2 µm [133]. The spectral
bandwidth and flatness were remarkably enhanced by maintaining dispersion flatness from 3.5 to 10µm
through a mode hybridization technique. The mode hybridization gives abruptly inflection of dispersion
profile at the hybridization wavelength, and thus leads to transformation between normal and anomalous
dispersion regimes. New nonlinear platforms have been proposed for MIR Kerr microcombs generation.
In 2019, Fan et al. numerically showed that a slot waveguide could obtain mode-locked MIR Kerr
microcomb in a LiNbO3 microring [134]. With only 50 mW pump power, the generated Kerr microcomb
covers from 2810 nm to 4630 nm. In 2019, Anashkina et al. numerically studied MIR Kerr microcomb
generation spanning 3 ∼ 4µm at −30 dB spectrum level in an As2S3 microbubble resonator with a
potential low pump power of 10 mW [135]. The spectral range of the Kerr microcombs could span
more than 700 nm. An effective method for spectrum stretching of Kerr microcombs is to draw support
from a post process of SC generation. In this method, a CW source is used as primary pump to
generate the Kerr microcomb in a microresonator. The generated Kerr microcomb is filtered to remove
the residual CW pump component, and then injected into a strip waveguide for SC generation. The
generated broadband SC is used for f − 2f self-referencing locking of carrier-envelope phase. This
idea has been experimentally achieved by Lamb et al. in 2018. A broadband, 15-GHz repetition-rate
frequency comb source is achieved, which is appropriate for optical-frequency comparisons and f − 2f
self-referencing [136]. The principle, experimental setup, and results for soliton Kerr microcomb and
SC generation are shown in Figure 10. Table 2 summarizes the reported schemes for Kerr microcomb
generation at VR, NIR, and MIR bands.

Table 2. Reported Kerr microcombs generation in the new bands. Experimental studies are marked
with ‘*’.

Region Material Structure Q factor Range (µm) Refs.

VR AlN Microring QL: 5 × 105 0.517, 0.776, and 1.4 to 1.65 [115]*

VR and NIR AlN Microring QL: 1.1 × 106 0.72 to 0.84, and 1.4 to 1.7 [122]*

VR and NIR SiN Microring QL: 1.30 × 106 0.502 to 0.58, and 1.327 to 2.082 [123]*

VR and NIR AlN Microring / 0.72 to 0.82, and 1.4 to 1.7 [124]*

VR and NIR SiO2 Microring Q0: 8 × 107 0.76 to 0.79 [125]*

NIR Si3N4 Microring Q0 > 1 × 107 1.5 to 1.56 [126]*

NIR LiNbO3 Microring QL: 1.1 × 106 1.68 to 1.8, and 1.88 to 1.96 [132]*

NIR Si3N4 Microring / 1.1 to 2.4, and 0.86 to 1.7 [127]*

NIR SiO2 Microdisk QL: 4.5 × 105 1.4 to 1.7 [128]*

MIR Si Microring QL: 2.45 × 105 2.4 to 4.3 [129]*

MIR Si Microring Q: 1 × 105 2.6 to 4.1 [130]*

MIR Si Microring / 2.9 to 2.99 [131]*

MIR Ge Microring Q0: 4 × 104 2.3 to 10.2 [133]

MIR LiNbO3 Microring / 2.81 to 4.63 [134]

MIR As2S3 Microbubble Q0: 1 × 106 3 to 4 [135]

VR to MIR Silica+Si3N4 Microdisk + strip / 0.7 to 2.1 [136]*
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(a) (b)

(c) (d) (e)

Figure 10. (a) Pictorial representation of frequency-comb generation and spectral evolution through
the system. A two-stage approach, first using a highly nonlinear fiber (HNLF) and then using a
S3iN4 waveguide, is used to achieve broadband spectra from a microcomb. (b) Upper panel: soliton
generation and stabilization using the lock technique described in the text. cw, continuous wave; SOA,
semiconductor optical amplifier; SSB, single-side band modulator; EDFA, erbium-doped fiber amplifier;
VCO, voltage-controlled oscillator. Lower panel: SC generation and frequency-comb stabilization with
a S3iN4 waveguide. frep, repetition-rate frequency; AOM, acousto-optic modulator; HNLF, highly
nonlinear fiber; SiN, silicon nitride; PPLN, periodically poled lithium niobate; fCEO, carrier-envelope
offset frequency. (c) Spectrum of a single soliton. (d) Octave-spanning SC generated when the waveguide
is pumped with a single soliton. (e) Frequency-counter data for the locked fCEO (1 s gate time) [136].
Copyright 2018 APS.

2.3. Intermodal Four-Wave Mixing

Conventional FWM involves four optical waves (nondegenerate) or three optical waves (degenerate) in
a nonlinear medium. For example, in the process of degenerate FWM two pump photons at frequency
ωp are converted into another two photons with new frequencies ωs and ωi, satisfying 2ωp = ωs + ωi,.
This process obeys the energy and momentum conservation. The efficiency η of FWM can be written
as [137]:

η ∝ sin c

(
Δk

L

2π

)2

(9)

where Δk represents the phase matching, and L stands for the length of waveguide. The phase
matching condition means Δk should be zero to maximize the efficiency. Δk includes a linear part
ΔkL and a nonlinear part ΔkNL, which are related to the waveguide modes of the pumps, signal
and idle. Intermodal FWM requires phase matching among different guided modes. Considering the
nondegenerate FWM process, the linear part ΔkL determined by the effective refractive index neff is
given by [137],

ΔkL =
ωp1

c
nj

eff (ωp1) +
ωp2

c
nq

eff (ωp2) − ωs

c
nl

eff (ωs) − ωi

c
nm

eff (ωi) (10)

where p1, p2, s, i represent two pumps, signal, and idle, respectively; c is the velocity of light in vacuum;
j, q, l, m indicate the orders of guided modes of the first pump, the second pump, the signal, and the
idler photon, respectively.

In recent years, intermodal FWM has been preliminarily studied on Si-based MNPWs. In 2018,
Signorini et al. studied both the intermodal spontaneous and stimulated FWM through simulation
and experiment [137]. The geometrical parameters of waveguide enabled flexible dispersion engineering
so that phase matching conditions among different modes could be satisfied. Figure 11 shows the
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(a)

(b) (c)

Figure 11. (a) Setup for the stimulated FWM. The pump is initially filtered with two 1550 nm bandpass
filters. Then, the pump and signal are mixed by a free-space beam splitter and coupled into the same
tapered lensed fiber through a collimator. The input fiber injects the light into the waveguide on the
SOI chip. The light is collected from the waveguide by another tapered lensed fiber. The collected
light is analyzed with an OSA or a monochromator. In the inset, the waveguide modes are sketched by
showing the mode profiles; as an example, the case of the (1, 2, 2, 1) modal combination is considered.
For the spontaneous FWM, the setup is the same except for the lack of the input signal. (b) Spectrum
of the stimulated FWM with the (1, 2, 2, 1) TE intermodal combination. The stimulating CW signal at
1640 nm is converted into the pulsed idler at 1469 nm. The smaller peaks are spurious signals due to the
OSA. (c) Spectrum of the stimulated idler generation efficiency with the intermodal FWM combination
(1, 2, 2, 1) TE mode. The blue circles are the measured data, while the orange line is the simulation. The
simulated spectrum was shifted by −3.3 dBm in order to match the experimental data [137]. Copyright
2018 OSA.

experimental setup and intermodal FWM results. When the pump was on both the fundamental and
2-nd TE modes, and the signal was on the fundamental TE mode, an idler on the 2-nd TE mode was
achieved. They also studied intermodal FWM with other modal combinations up to 3-rd TE and TM
modes.

In the same year, Signorini et al. achieved single photon pairs through the intermodal FWM on
a Si rib waveguide. The coincidences between the idle at 1.281 µm and the signal at 1.952 µm with
the (1, 2, 2, 1) TE modal combination were measured [138]. They proposed asymmetric directional
couplers to extract higher-order modes, demonstrating a fully integrated scheme of intermodal FWM.
The high tunability of phase matching wavelength and bandwidth of intermodal FWM was studied
in their work. In 2019, Lacava et al. used the Bragg scattering (BS) intermodal FWM method to
achieve a dual-CW-pumped SOI wavelength converter [139]. The idler and signal were both on the
fundamental TE mode, and two pumps were on the 2-nd TE mode. They found that the overall BS
FWM efficiency was limited by the TPA and FCA effects in Si. In the same year, they also proposed
another scheme to realize the BS intermodal nondegenerate FWM on a fabricated Si-rich silicon nitride
platform [140]. Figure 12 shows the experimental setup in this work. The two pump waves on the
fundamental mode are in the C-band and could realize efficient phase matching with the signal on the
2-nd TE mode far away in the L-band. Thus, the wavelength conversion over a bandwidth exceeding
40 nm was achieved by intermodal FWM. The conversion efficiency (ratio between the output idler and
the output signal power levels) was measured to be −15 dB for a total input pump power of 32 dBm.
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(a) (b) (c)

(d)

Figure 12. Generated spectra when (a) P1, P2 and S were launched in the TE00, TE00 and TE10
modes, respectively; (b) P1, P2 and S were launched in the TE00, TE00 and TE10 mode, respectively;
(c) P1, P2 and S were all launched in the TE00 mode; (d) Experimental setup for the BS FWM. Inset
figures: spatial modes distributions at various points in the system [140]. Copyright 2019 OSA.

Further optimization of the waveguide to reduce the loss is claimed to help in achieving higher conversion
efficiency. Guo et al. experimentally showed the formation of breather solitons in two microresonator
platforms (crystalline MgF2 and photonic chip-based Si3N4 microresonators) dominated by intermodal
FWM process. Breather solitons undergo a periodic evolution in their amplitude and duration are found
in their experiments [141].

3. NONLINEAR PULSE SHAPING

When an optical pulse with high intensity was injected into a nonlinear medium, its electric field
will strongly change the motion state of bound electrons, which results in the so-called polarization
intensity. In turn, the electrons will react to incoming pulses and cause the redistribution of pulse
frequency components. The intensity distribution in the time domain is changed, and pulse shaping
occurs. For example, pulses from the Yb-doped fiber lasers are usually with the Gaussian form. But
it can be easily shaped to the parabolic, triangular, and flat-top profiles by means of nonlinear pulse
shaping in χ(3) media [142–144]. Artificial neural networks have been recently used for nonlinear pulse
shaping in optical fibers, in which powerful machine-learning models retrieve the parameters of nonlinear
propagation from the observed output pulses [145, 146]. In the frequency domain, the spectrum can
be equally sliced in multistage parametric mixer with nonlinear pulse shaping [147]. This method is
essentially different from the linear pulse shaping [148]. The latter one is often accomplished by using
a spatial light modulator (SLM) or bulky electro-optic modulator, in which the phase, amplitude, and
polarization of light are changed linearly. While programmable linear pulse shaping technology in
the liquid crystal and acousto-optic SLMs have been fulfilled, the nonlinear pulse shaping has unique
advantages such as ultrafast response time (femtosecond level) and broad operation bandwidth. More
importantly, by using the nonlinear pulse shaping, it is possible to realize a fully passive optical-to-optical
controlled module, which is particularly important for the future all-optical devices. Chip-scale MNPWs
makes pulse shaping on a chip possible. The current linear pulse shaping in bulky and electrically driven
modulators is still difficult to integrate. Due to the inherent large nonlinear refractive index of MNPWs,
the power consumption required by nonlinear pulse shaping can be much lower. Different techniques
for nonlinear pulse shaping on MNPW platforms are reviewed in the following.
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3.1. Pulse Compression

PC is a key technology for generating ultrashort pulses, which are widely used in optical communication
systems [149], SC and frequency comb generation [150], ultrafast spectroscopy [151], and biology [152].
While many applications benefit from pulses with ultrashort duration and high average power, it is a
challenge to simultaneously achieve both with a laser. For example, a Ti:Sapphire solid-state laser can
produce few-cycle pulses, but the average power is usually limited to only a few watts. Conversely, by
using a Yb-doped laser one can obtain pulses with an average power over 100 W, the pulse duration is
however restricted in a few hundreds of femtoseconds due to the limited gain bandwidth. Therefore,
additional PC process outside a laser cavity is necessary. PC techniques include chirp compensation
compression, soliton self-compression (SSC), nonlinear absorption assisted compression, and self-similar
compression.

Chirp compensation compression is the most typical PC technique that has been employed for a
long time [153]. The first step of this technique is to achieve a positive chirp accompanied by nonlinear
phase accumulation at a normal dispersion region. Then, the resultant positive chirp is compensated by
negative ones introduced by post chirped lens, gratings, or prisms. To design such a system on MNPW
platforms, the GVD of the first-stage waveguide should be tailored to be normal. After the optical
spectrum is expanded by a strong nonlinear effect in the first-stage waveguide, a successive stage with
anomalous GVD cancels the positive chirp. Consequently, the input pulse is temporally compressed.
This idea has been confirmed with both simulations and experiments. In 2019, Mei et al. numerically
designed a cascaded Si waveguide which is buried in a silica box for PC at pump wavelength of 1550 nm
[154]. As shown in Figure 13(a), the cascaded Si waveguide is divided into three segments of A, B, and
C. Segment A was used to transfer the input Gaussian pulse to PP by using the self-similar technique
within normal dispersion region. Segment B was used to convert the GVD at 1550 nm from positive to
negative. Segment C was designed to be a strip Si waveguide whose GVD is anomalous at the pump
wavelength. Parabolic pulse compression occurs at section C. Simulation results showed that the input
Gaussian pulse first efficiently evolved into a PP, and finally compressed to 35.6 fs. The corresponding
evolution of temporal pulses are shown in Figures 13(b), 13(c), and 13(d) respectively for three different
self-similar cases. The insets show the pulse propagation in segment B for each case. The largest
compression factor among the three self-similar cases is 8.4. The compressed pulse is not only chirp

(a) (b)

(c) (d)

Figure 13. (a) Schematic diagram of cascaded Si waveguides buried in silica box, the mode field
distributions at the input of segment A and output of segment C at the pump wavelength of 1550 nm.
The evolutions of the temporal pulses in the cascaded Si waveguides for (b) Case 1 (Ain = 300 fs,
Aout = 464.9 fs and Cout = 37.6 fs), (c) Case 2 (Ain = 300 fs, Aout = 443.7 fs and Cout = 35.6 fs), and
(d) Case 3 (Ain = 300 fs, Aout = 475.5 fs and Cout = 45.9 fs). The insets in (b), (c), and (d) are the
evolutions of the temporal pulses in Segment B [154]. Copyright 2019 IEEE.
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free, but also has very low pedestals. Tan et al. reported the first experimental demonstration of a
chip-scale pulse compressor on specially designed Si nanowire waveguide [155]. The PC scheme uses
first-stage nonlinear spectral broadening induced by SPM in a Si nanowire. Temporal compression
occurs in an integrated dispersive grating. Leveraging a low input peak power of 10 W, they achieved
a compression factor as high as 7 for a 7-ps input pulse. The waveguide structure includes the bended
strip waveguide and periodic coupled grating structure. Within the 3-dB bandwidth of the dispersive
grating, the group delay was almost linear. The 3-dB transmission bandwidth of grating was 11 nm. It
is shown that free carriers do not degrade the PC at a certain low peak power level. The compressed
pulse, unfortunately, exhibited severe pedestals because of the imperfect chirp compensation at the
leading and trailing edges of the pulse.

SSC is a unique compression technique which can achieve higher-order soliton pulses. For SSC,
the required nonlinear effect is much stronger, yielding LNL < LD � L where LD = T 2

0 /|β2| and
LNL = 1/(γP0) are dispersion length and nonlinear length, respectively. Both nonlinearity and
dispersion are required to be large for SSC in short propagation length. While LNL < LD can
be inherently satisfied by higher-order soliton injection, the realization of short-length SSC depends
on MNPW design. Photonic crystal waveguide (PhCW) is a competitive candidate due to its giant
nonlinearity and dispersion enhanced by slow-light effect. Slow-light effect makes the light propagating
in PhCWs much slower than in common MNPWs. Consequently, nonlinear accumulation can be
significantly enhanced. Moreover, the dispersion of PhCW can be flexibly adjusted by changing
parameters such as hole size and hole spacing. Colman et al. reported the first experimental observations
of SSC in GaInP PhCWs with periodic dielectric structure [156]. Remarkable pulse narrowing occurs
due to the strong interaction between GVD and slow light enhanced SPM effect. As a result, a 3-ps
input pulse was compressed to a minimum pulse duration of 580 fs, corresponding to pulse energy of
∼ 10 pJ. The small Aeff (10 ∼ 13µm2) combined with slow light enhanced nonlinearity allows for an
ultralow power threshold SSC at millimeter propagation length scale. However, the used GaInP is not
compatible with current CMOS foundry. Alternatively, Sahin et al. reported the observation of SSC
and associated dynamics in a CMOS-compatible ultra-Si-rich nitride (USRN) Bragg grating [157]. The
schematic diagram of the designed Bragg grating which employs the silica as under- and over-cladding
is shown in Figure 14(a). Due to the special grating structure, the higher-order Bragg soliton was
formed with a pulse width of 4.93 ps, as shown in the right panel of Figure 14(b). The pulse width
was compressed to 0.86 ps, corresponding to a compression factor of 5.7 and soliton order of 4.65. To
further increase the compression factor, Choi et al. reported on-chip SSC by using strip waveguide made
of USRN in 2019 [158]. The initial pulse with duration of 2 ps and energy of ∼ 16 pJ is pumped at
1550 nm wavelength. The experimental results showed an impressive compression factor of 8.7, which
is the largest for a chip-scale MNPW platform to date.

For SSC on Si-PhCW platforms, in 2014, Redondo et al. experimentally reported SSC of picosecond
pulse pumped at 1547 nm [159]. The input pulse was compressed from 3.7 to 1.6 ps, and the used energy
was as low as 10 pJ. Figures 15(a) and 15(b) show the physical interpretation of this scheme in both
time and frequency domain. Different from the nonlinear fiber platforms in which Raman self-frequency
shift effects can slow down and compress the pulse, the proposed Si-PhCW exhibits a free-carrier
effect that accelerates the pulse propagation accompanied by significant intensity reduction, temporal
asymmetry, and compression. The input 3.7-ps pulse was compressed to a minimum duration of 1.6 ps.
The corresponding compression factor is 2.3 and compressed peak power is 2.4 W (∼ 9 pJ). This work
is the first experimental demonstration of picosecond SSC on Si-PhCW platform at the telecom band.

In the aspect of theoretical works, Amine et al. proposed SSC in highly nonlinear chalcogenide
nanowires with ultralow pulse energy [160]. By controlling the diameter of As2S3 and As2Se3 nanowires
to be smaller than pump wavelength, a 5.07-fs pulse in an 0.84 mm-long As2S3 photonic nanowire was
generated. This near single-cycle pulse was obtained starting from a 250-fs input pulse with 50 pJ energy.
Because of the high TPA coefficient of As2Se3 glass, the compression of 250 fs was only down to 25.4 fs
in a 2.1 mm-long As2Se3 nanowire with 10 pJ input pulse energy. In 2014, Lavdas et al. theoretically
studied the tapered Si nanowire for SSC [161]. The pump wavelengths in both telecom (1550 nm) and
MIR (2100 nm) bands were studied when the input soliton order is up to 10. The linear and nonlinear
optical properties, especially the TPA, FCA, and FCD, of the waveguide were found to be controllable
in such a tapered structure. Simulation results showed that the compression factor can exceed 10 at
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Figure 14. (a) 3D schematic diagram of cladding-modulated Bragg gratings with parameters denoted:
pitch (ΛB), waveguide width (W ), height (h), length (L) and pillar radius (r) and gaps (G1 and
G2). Input and output pulses show the effect of nonlinear pulse propagation along a Bragg grating at
wavelengths close to the stop-band for a picosecond pulse. (b) Measured spectral and temporal profiles
of the source pulse. (c) Measured spectrum and temporal profile of soliton evolution for N = 4.65 [157].
Copyright 2019 Wiley Online Library.

the MIR band.
Nonlinear absorption assisted compression is a special PC technique achieved by employing the

FCA effect. The energy of pulse is depleted at the trailing edge, resulting in pulse peak moving towards
the leading edge due to free carrier accumulation. Consequently, the pulse duration is reduced. In
2007, Tien et al. experimentally demonstrated this method in Si waveguide [34]. The compression of
400-ps mode-locked pulses at 1560 nm is shown in a 1.7 cm-long Si waveguide. The proposed scheme was
confirmed to be wavelength independent, enabling a broadband PC from 1.1 and 2.2µm. The proposed
scheme can be easily implemented with Ge waveguides to facilitate mode-locking up to 3.4 µm. Here,
nonlinear absorption properties of Si have been utilized as opposed to Si-Ge Bragg reflector. The
initial launched optical pulse with high intensity stimulates the inherent TPA process in Si waveguide
when the pumping wavelength is located at telecom band. After that, an electron-hole pair is created
instantaneously. Since the lifetime of free carrier is much larger than input pulse width, free-carrier
concentration will be built up over the whole pulse duration. Larger energy loss at the trailing edge
leads to PC. If the Si MNPW is used as a part of intracavity resonator, mode-locking of long pulse is
possible.

Self-similar PC is another efficient technique to achieve pedestal-free and large compression factor
PC. It has been theoretically proposed [162, 163] and then numerically confirmed in PCFs [164].
According to the self-similar theory, the evolution of pulse width in a nonlinear medium with varied β2

and γ is given by,

Tout = Tin
β2 (z) γ (0)
γ (z) β2 (0)

(11)

where Tout and Tin are the output and input pulse width, and γ(0) and β2(0) are the values of γ(z) and
β2(z) at z = 0, respectively. The analytical solutions of γ(z) and β2(z) are given by [163],

γ (z) =
γ (0)

1 − σz
, (12a)

β2 (z) = β2 (0) e−σz , (12b)
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Figure 15. Schematic diagram illustrating the differences between different soliton regimes. (a) Time
domain behavior of SSC in the fiber (Raman) and Si PhCWs (free carriers) with anomalous dispersion.
(b) Representation of the spectral domain with red Raman (fiber) and blue free-carrier shifts (Si PhCWs)
of the pulse energy. (c) Experimental FROG spectrograms of the input (upper panel) and output (lower
panel) pulses. (d) measured (dashed red) and modelled (blue) intensity in the spectral domain; (e)
measured intensity (dashed red) and phase (dashed green) along with the NLSE-modelled intensity
(blue) and phase(magenta) in the time domain following numerical deconvolution [159]. Copyright 2014
Nature Publishing Group.

where σ = β2(0)ξ, ξ is the initial chip factor of optical pulse. There are three cases for self-similar PC:
(i) jointly varied γ(z) and β2(z), (ii) varied γ(z) and constant β2(z), and (iii) constant γ(z) and varied
β2(z), the corresponding output pulse width for the three case are as follows,

Tout =

⎧⎨
⎩

Tine−σz/(1 − σz) ,

Tin/(1 − σz) ,

Tine−σz ,

(i)
(ii)
(iii)

(13)

where σ > 0 and σz < 1. As described by Eq. (13), the pulse width is decreased with propagation.
The self-similar theory can ensure that the propagating pulse is a fundamental soliton over the whole
propagation path. The PC factor is proportional to the product σz. Nonlinear photon absorption and
free carrier effect will invalidate the self-similar condition, thus materials with larger bandgap than Si
(e.g., SiN and chalcogenide) are preferred.

Self-similar PC has been theoretically studied in MNPWs in recent years. In 2016, Mei et
al. carefully designed a chalcogenide-silicon hybrid slot waveguide taper to realize self-similar PC
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Figure 16. (a) Cross-section, and (b) top view of the designed As2S3-Si hybrid slot waveguide taper,
where Win and Wout represent the widths of the input and output ports, respectively. The evolution
of self-similar fundamental soliton compression is shown in the (c) time and (d) frequency domains,
respectively [165]. Copyright 2016 IEEE.

numerically when the pumping wavelength is 1.55 µm [165]. Figure 16 shows the designed waveguide
structure and compression performance. Within a 6 cm-long taper, a 1-ps fundamental soliton pulse
was self-similarly compressed to 81.5 fs, with a compression ratio of 12.3. When the input soliton
order is increased to 2, initial pulse width of 1 ps was compressed to 80.3 fs in a reduced waveguide
length of 2.54 cm. The corresponding compression ratio is 12.45. The pedestals resulting from higher-
order dispersive and nonlinear effects were confirmed to be extremely low. To simplify the waveguide
fabrication, Huang recently numerically designed a tapered Si ridge slot waveguide operating at 1.55 µm.
An initial 1-ps pulse was compressed to 82.53 fs. The corresponding peak power of the compressed pulse
is 7.11 times higher than that of the initial pulse [166]. In 2017, Yuan et al. numerically designed a
reverse tapered Si waveguide for self-similar compression at shallow MIR region [167]. A 1-ps long
pulse pumped at 2.49 µm was self-similarly compressed to 57.29 fs in a 5.1 cm-long waveguide. The
corresponding compression factor is 17.46. This waveguide structure is simple to fabricate and does
not show detrimental effects such as high-order dispersion and nonlinear loss. This scheme provides a
feasible way for on-chip pulse compressors with both large compression factor and high pulse quality.
Nevertheless, the operation region is limited in the MIR bands. To further improve the compression
factor of self-similar PC at the MIR bands, Cheng et al. numerically designed a suspended inversely
tapered Si strip waveguide for high-degree self-similar PC [168]. The specially designed suspended
structure aims at reducing the material loss of silica substrate at the MIR band. A 1.5-ps input
fundamental soliton at pump wavelength of 2.25 µm was compressed to 46.73 fs in a 2.79 cm-long Si
taper. The generated femtosecond pulse was then utilized to pump another Si strip waveguide for
octave-spanning and highly coherent supercontinuum generation. Table 3 summarizes the reported PC
in MNPWs by different waveguide structures and compression methods.

From the aspect of compression ratio, nonlinear absorption compression shows the best
performance. However, nonlinear absorption only works efficiently for pulses whose durations are
comparable with the free carrier lifetime and not less than nanosecond. In addition, the input
energy is largely consumed during the compression process, rendering it unsuitable for large-scale
on-chip applications. Chirp compensation and SSC are better choices in terms of femtosecond pulse
compression. In particular, the latter could work under rather low energy because of the slow-light
enhanced nonlinearity. The compression ratio is nevertheless limited by the inherent drawbacks of
SSC mechanism. While self-similar compression shows higher compression ratio and better compression
quality, the waveguide structure is required to be tapered precisely. This is why there is no experimental
realization of self-similar compression so far.
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Table 3. PC with different schemes (References marked with “*” indicate experimental studies).

Material Structure Mechanism Ratio Refs.
Si Cascaded channel Chirp compensation 8.4 [154]
Si Cascaded channel Chirp compensation 7 [155]*

GaInP PhCWs SSC 5.17 [156]*
USRN FGB SSC 5.7 [157]*
USRN Strip SSC 8.7 [158]*

Si PhCW SSC 2.3 [159]*
As2S3 Nanowire SSC 9.84 [160]

Si Tapered strip SSC 10 [161]
Si Strip Nonlinear absorption 25 [34]*

As2S3 Tapered slot Self-similarity 12.3 [165]
Si Tapered slot Self-similarity 12.1 [166]
Si Inversely tapered ridge Self-similarity 17.46 [167]
Si Suspended tapered strip Self-similarity 32.1 [168]

3.2. Spectral Compression

SPC which occurs in the frequency domain has distinct physical dynamics during the compression
process with respect to PC. For SPC, both low- and high-frequency components of injected spectrum
move towards to the center frequency due to the interaction between dispersion and χ(3) nonlinearity.
Consequently, the intensity of center frequency component becomes much higher. The compressed
spectrum has significantly improved brightness. The narrow-linewidth spectral source finds important
applications in the all-optical ADC [169], optical coherence tomography [170], and coherent light source
synthesis [171].

Until now, SPC has been widely reported only in fibers. In 2011, Chuang and Huang demonstrated
both numerically and experimentally that adiabatic soliton SPC in a dispersion-increasing fiber [172].
An experimental SPC ratio of 15.5 was obtained using 350 fs positively chirped input pulse centered
at 1.5 µm. Andresen et al. demonstrated efficient SPC of femtosecond pulses near the zero-dispersion
wavelength in nonlinear photonic crystal fibers [173]. The highest measured compression factor is 21,
and the spectral brightness increases by a factor of 5. The reports of SPC in MNPWs are still rare
due to the short interaction length. In 2016, Mei et al. numerically investigated SPC for PP in a
4 cm-long Si3N4 channel waveguide [174]. The resulting maximum SPC ratio reached 25.8 over the
whole propagation. Different input temporal profiles like Gaussian and hyperbolic secant were also
studied for comparison. Parabolic profile is the best choice among the three initial profiles. This is
because all temporal chirp of PP can be fully compensated due to its unique temporal waveform. The
spectral pedestals of PP after SPC were as low as −15.5 dB, which is the lowest one among the three
kinds of pulse profiles. The same group further numerically studied an efficient SPC of self-frequency
shifted soliton in a chalcogenide strip waveguide in 2019. The combination of SPC and SSFS were
further utilized in an integratable all-optical quantization scheme [175]. The SPC and SSFS in this
work were simultaneously achieved due to joint engineering of dispersion and nonlinearity. Increasing
anomalous GVD and decreasing nonlinear coefficient with wavelength are key to this type of SPC. As
shown in Figure 17, when the incident peak power is 25 W, the spectrum was compressed from 52.04 nm
to 7.23 nm, and the center wavelength is red-shifted by 17 nm. When the incident peak power was
increased to 75 W, the spectrum was compressed from 52.04 nm to 10.64 nm, and the center wavelength
was red-shifted by 190 nm. In MIR region, Cheng et al. numerically demonstrated SPC of a soliton
pulse pumped at 2.4 µm in an adiabatically suspended Si waveguide taper in 2019 [176]. Simulation
results showed that high-degree SPC with a factor up to 10.9 can be achieved in a 6-cm length when the
input femtosecond pulse is chirp-free. The realization of the method strongly depends on the design of
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Figure 17. (a) The three-dimensional view and (b) the input and output pulses in the time and
frequency domains. (c) Optical mode profiles of quasi-TE mode calculated at wavelengths 1550 and
1750 nm, respectively. (d) Schematic diagram of the all-optical quantization based on the SPC of soliton
in the designed waveguide [175]. Copyright 2019 IEEE.

GVD and χ(3) nonlinearity, i.e., by engineering the profiles of GVD and χ(3) nonlinearity as a function of
propagation distance. The achievable SPC factor is expected to be further improved after the geometric
parameters of designed waveguide are further optimized.

3.3. Parabolic Pulse Generation

Special types of pulses can maintain their own shape during propagation and often called “similaritons”.
Optical soliton is the most typical and simplest example of a similariton that is able to propagate in
a homogeneous medium with χ(3) nonlinearity and anomalous GVD. When the anomalous GVD is
slowly varied along the propagation, the parameters of soliton can be changed adiabatically so that
the fundamental soliton condition is fulfilled automatically. Similar processes in a tapered medium are
regarded as self-similar evolution, which has been analytically described by the well-known self-similar
theory. Compared with solitons that do not exist in the normal dispersion regime, PPs keep their shape
unchanged in the normal dispersion regime propagation for both active and passive waveguides. This
is because PP does not suffer from the optical wave breaking in the normal dispersion regime. This
is the main restriction for stable soliton propagation in high-power fiber amplification systems. Unlike
soliton formation that requires a certain power threshold, PP has no requirement in initial shape, peak
power, width, or phase. Mathematically, PP is the asymptotic solution of NLSE with constant gain
coefficient and normal GVD. Input pulses with arbitrary temporal profiles will eventually evolve into PP
provided the GVD and nonlinearity characteristics as a function of propagation distance satisfy certain
conditions [177]. PP has many important applications in high-power pulse amplification, ultrashort
pulse generation, optical cloaking, highly coherent SC generation, etc. Nevertheless, the time-domain
profiles from most commercial pulsed laser sources are Gaussian, Lorentzian, or hyperbolic secant.
Generation of PP inside a laser cavity without external assistance is challenging.

In the past two decades, several solutions have been proposed to generate PP externally. For
example, PP generation has been fulfilled in rare-earth doped fiber amplifiers, such as Yb- and Er-
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doped fiber amplifiers [178, 179]. PP can be also generated in nonlinear Raman amplifiers [180] in which
the gain spectrum is wider. While it is easy to get PP with high power from many amplifiers, active
devices raise problems such as increasing system complexity and strong spontaneous emission noise.
Therefore, PP generation by passive schemes should be considered [181]. According to the self-similar
theory, PP can be generated in passive waveguides if its GVD and nonlinearity profiles are designed
suitably. This is because varied GVD and nonlinearity along the propagation are equivalent to the gain
imposed by active amplifiers [182]. Therefore, how to design the dispersion and nonlinearity becomes
the key problem for PP generation in passive waveguides. Passive generation of PP in dispersion-
decreasing tapered fiber [183], GVD-decreasing comb fiber [184], and two cascaded normal GVD fibers
have been reported [185]. However, due to the inherently low nonlinearity, inflexible dispersion tailoring,
and limited transparent window of single-mode fiber, aforementioned methods usually require long
propagation length and limited operation bands. Therefore, PP generation on the MNPW platforms is
a promising research direction.

In 2013, Lavdas et al. numerically studied PP generation in tapered Si MNPWs at both telecom
(λ = 1.55µm) and MIR (λ = 2.2µm) regions [186]. Simulations results showed that in the normal
dispersion regime, the input Gaussian pulse could evolve into PP in tapered Si nanowires with less than
6-mm length. The initial super-Gaussian pulse can evolve into a PP within the smallest waveguide
length of 3mm. The proposed waveguide structures and corresponding simulation results are shown in
Figure 18. Lavdas et al. numerically investigated the generation and collision of optical similaritons in
dispersion-engineered Si nanowires [187]. Optical similaritons were confirmed to be maintained well in
the collision process even with presence of nonlinear absorption. The interaction between similaritons
was found to strongly depend on the conditions under which the collision occurs. In 2017, Mei et
al. theoretically presented a comprehensive study of PP generation in tapered hydrogenated amorphous
Si nanowires due to its relatively large nonlinearity compared with monocrystalline Si [188]. The self-
similar theory with single parameter variation is analytically studied to guide the waveguide design.
Two tapered nanowires can be designed to be nonlinearity increasing or dispersion decreasing along
the propagation. In another report, they also studied the PP generation in a Si taper with jointly
engineered dispersion and nonlinearity [189]. GVD and nonlinearity can be varied simultaneously along
the propagation. The relationship between GVD and nonlinearity was reconstructed so that the Si taper
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Figure 18. (a) and (b) Temporal pulse at different propagation points and the chirp of the output
pulse, for the full model (solid line) and for β3 = 0 and τ = 0 (dotted line) (top panels). The insets
show mismatch parameter versus z, for the full model (solid line) and for β3 = 0 and τ = 0 (dotted
line). (c) and (d) The corresponding spectra of temporal pulses in (a) and (b). The panels to the left
(right) correspond to λ = 2.2µm (λ = 1.55µm). (e) Schematics (on the left) and dependence of w(z)
for linear and exponential tapers (on the right), (f) and (g) εI2 versus z for the tapers in (e) [186].
Copyright 2013 OSA.
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can be designed by using the bisection algorithm. Multi-wavelength PPs generation were also studied
in tapered Si nanowires by Mei et al. [190]. In this work, the coupled inhomogeneous NLSE was derived
and employed to model the influence of XPM in the presence of nonlinear absorption and free carrier
effects. Simulation results showed that wavelength interval between the pump center wavelengths and
waveguide length are two critical factors that determines the quality of generated multi-wavelength PPs.

Although passive generation of PP on MNPW platforms has been theoretically studied, there is still
no experimental demonstration so far. Experimental generation of PP in MNPWs should be feasible with
the current mature fabrication technology because the required waveguide tapers with similar profiles
have already been successfully and accurately fabricated for linear MNPW functionalities. Additionally,
the required taper profiles for PP generation is not as strict as that required by self-similar PC, so
fabrication defects are tolerable.

4. ALL-OPTICAL SIGNAL PROCESSING

Signal processing is critical for information extraction, transformation, correction, and analysis.
According the type of signal to be dealt with, signal processing can be generally classified as two
branches, i.e., analog and digital signal processing, which have been utilized in electric devices such as
computers, mobile phones, as well as televisions. Due to the growing demand on information capacity,
especially the recently developed high throughput 5G technology, cloud computing, and data center,
traditional electronics are inadequate because the processing speed is severely limited by the electronic
response of ns level [191]. The electron-electron interactions may also induce the inherent aperture
jitter as well as comparator ambiguity, which degrade the quality of signal processing. Compared with
electrons, photon-photon interactions have superior response time and lower jitter and noise due to the
passive operation [192]. Optically assisted signal processing can improve the system performance in
which the photons are used as the information carriers [193]. However, this kind of system requires
the transition process of optical-to-electrical-to-optical conversion which would inevitably introduce
additional noise, response limitation, and system complexity. Consequently, the efficiency of signal
processing is reduced. To avoid this drawback of O-E-O conversion, all-optical signal processing
(AOSP) in which the electronic signal is not needed anymore has attracted much attention. AOSP
not only improves the speed of signal processing but also increases the system capacity. Study on
AOSP was initially started from optical switching and temporal de-multiplexing, and has grown into
extensive functionalities such as wavelength conversion, format conversion, 3R regeneration, filtering,
mode conversion, logic gate, photonic ADC, etc. So far, chip-scale AOSP devices are still underdeveloped
compared with the mature electronic signal processor. Several chip-scale AOSP advances are discussed.

4.1. All-Optical Analog-to-Digital Converter

ADC transforms analog signals to digital ones, bridging the real and virtual worlds because most
information in our lives is naturally analog. High performance ADCs are the key components in real-time
signal acquiring and processing systems, ultra-high speed optical communication systems and advanced
radar. However, electronic ADCs show inevitable trade-off on the quantization resolution and operation
bandwidth due to the inherent timing jitter of electronic sampling clock aperture and ambiguity of
electronic comparator. The effective resolution of traditional electrical ADCs will be severely degraded
if the sampling rate is several tens of gigahertz. The development of mode-locked laser sources with
ultralow timing jitter (several and even sub-femtoseconds) avoids the trade-off by means of photonic
ADC, which uses optical sampling and quantization [194–196]. While traditional electrical ADC has
limited response time and bandwidth, photonic ADC can avoid these inherent electronic bottlenecks
and is a promising method for future high-speed signal processing [197]. In the past two decades,
some key developments for ADC such as time-stretching or time-interleaving techniques that combine
with electronic ADCs, phase-shifted optical quantization technique, and all-optical approaches based
on nonlinear optical effects have been reported [195, 197, 198]. The former methods still rely on the
active device such as electronic ADCs and electro-optic modulators and aim to digitize the electrical
analog signals. The latter all-optical ones based on nonlinear optical effects are fully passive, which
directly digitize optical analog signals without prior optic-electro conversion. All sub-modules can be
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accomplished in the optical domain, e.g., the sampling, quantization, and encoding. Consequently, the
disadvantage of electrical components can be conquered by only using passive devices. FWM and XPM
can be employed to realize high-speed all-optical sampling [199, 200]. The SSFS, SPM, and XPM effects
have been used to fulfill high-resolution of all-optical quantization [201, 202].

The principle of all-optical sampling is very similar to the parametric time-division de-multiplexing.
The optical analog signal can be sampled through a FWM process at high speed from several to hundreds
of gigahertz. To increase the sampling rate, Bres et al. proposed a scheme for real-time processing of
arbitrary optical signals named multicast parametric synchronous sampling [203]. The main idea is
that by utilizing a multicast FWM process to replicate sampling pump pulses, a multiplication of the
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Figure 19. (a) Experimental setup (FFL, femtosecond fiber laser; VOA, variable optical attenuator;
PM, power meter). The insertions show SEM image for the waveguide with a thin layer of 20 nm Si-nc
in the core center and the corresponding simulated electric field profile of the quasi-TE polarization.
(b) Measured spectral profiles at the output of the 50 cm Si-nc loaded waveguide (1.75 µm × 1.75 µm)
with different input pump peak powers. (c) Measured power transfer functions of the two quantization
channels by filtering the spectrum at the wavelengths of 1557 and 1558 nm, respectively. (d), (e)
Power transfer functions of the two channels with binary decision results. (f) Schematic diagram of
the proposed all-optical ADC. MLLD, mode-locked laser diode; AWG, arrayed waveguide grating; PD,
photodiode [202]. Copyright 2019 OSA.
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sampling rate is achieved. The amount of multiplication is proportional to the number of broadcasted
replications. Some subsequent works have focused on increasing the number of broadcast replications.
However, a large number of replications would make the structure complex and require large parametric
gain bandwidth. In particular, the fluctuation of gain efficiency between replicated signals will degrade
the sampling performance.

All-optical quantization is another key module for all-optical ADC. All-optical quantization can
be divided into three branches from the view of power to intensity, phase, and frequency mapping.
Recently, all-optical ADC on nonlinear MNPW platforms has become a hot topic because it meets
the requirement of future CMOS-compatible on-chip potential with low power consumption. However,
most of the reported works are still theoretical. For example, Miao et al. proposed 2-bit all-optical
ADC in photonic crystal waveguide by using intensity quantization [204]. Kang et al. proposed a
phase quantization scheme by using the XPM effect in a Si-organic hybrid slot waveguide based nested
interferometer structure [205]. For the frequency quantization, Kang et al. proposed a CMOS-compatible
2-bit optical spectral quantization scheme using a Si-nanocrystal-based horizontal slot waveguide [206].
Kang et al. proposed an all-optical quantization scheme by slicing the SC generated in a chalcogenide
horizontal slot waveguide [207]. SSFS is another nonlinear effect that can be used to realize frequency-
based all-optical quantization since the central wavelength of red-shifted solitons will always be directly
proportional to input peak power. Kang et al. designed a chalcogenide-silicon slot waveguide for
integratable all-optical spectral quantization [208]. Zhang et al. modified this scheme by designing
a cascaded chalcogenide-silicon slot waveguide [209]. While the quantization resolution was improved,
the waveguide structure is more complicated because the cascaded structure increases the difficulty
in facet coupling. To solve this problem, Mei et al. proposed an integratable all-optical quantization
scheme by using the efficient SPC of self-frequency shifted soliton [175].

Experimentally, in 2019, an on-chip 2-bit all-optical ADC was demonstrated on a 50 cm-long strip-
loaded hybrid waveguide comprising of Si-nanocrystal (Si-nc) strip and highly doped silica cladding [202].
Figure 19 shows the experimental setup of this scheme. The waveguide simultaneously possesses low loss
(0.16 dB/cm), large nonlinearity (305 W−1/km), and negligible nonlinear absorption, enabling power-
efficient operation. The average power of only 0.72 mW, peak power of 94.2 W, and energy consumption
of 19.55 pJ/bit fulfilled the 2-bit ADC. This experiment makes the CMOS-compatible and power-efficient
all-optical ADC based on χ(3) nonlinearity a reality. There is potential for fully monolithic solutions
for all-optical ADC, in which integrated pulsed laser source and photodiodes are the key components
waiting for better solutions.

4.2. All-Optical Logic Gate

The concept of all-optical logic gate (AOLG) with photonic circuits was developed in the mid-1980s [210].
It is one of the basic units in the AOSP system. Nonlinear Fabry-Perot etalons were used to realize
the AOLG [211]. However, this kind of device is too bulky to meet the requirement of integration and
low power consumption. This barrier prevented the development of the AOLG until the maturation
of micro/nano-fabrication technology after 1990s. Schemes of chip-scale AOLG have been proposed by
using strip waveguide, nested microresonator array, PhCW, and quantum-dot semiconductor optical
amplifier (QD-SOA), etc. Based on these MNPWs, not only simple functions such as AND, OR, XOR,
and NOT, but also the complex ones such as adder, multiplier, and comparator can be realized.

In 2017, Wang et al. demonstrated on-chip dual-channel all-optical AND gate using FWM in
a multimode Si cascaded directional coupler [212]. The idlers of FWM products in the multimode
waveguide carried the AND logic result and output at different ports according to the mode order. Two
5Gb/s OOK signals are used in the experiment as a proof of concept, resulting in an aggregate bit rate of
10 Gb/s. In 2019, Wu et al. numerically studied the impact of TPA and free-carrier effects on all-optical
logic gates in Si waveguides [213]. The conversion efficiency was found to be greatly reduced and the
waveform was seriously distorted. Then, a Si-organic hybrid dual-slot waveguide with extremely large
nonlinear parameter higher than 1.4×107 W−1/km and without TPA was designed for FWM-based all-
optical logic gates with AND, OR, and XOR functions in the C-band. Power consumption is one of the
key performance indices of AOLG. The low loss strip waveguides, nonlinear microresonators with high
Q-factors and small mode volume provide power-efficient and scalable solutions for AOLG. Nonlinear
effects such as FWM, SPM, and XPM can be observed at a low pump power due to the dramatic
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(a)

(b)

(c)

(d)

Figure 20. (a) Principle of the logic gate. (b) Experimental setup. A laser beam is split into two
branches, corresponding to inputs A and B. Each input is independently amplitude modulated by a
Mach-Zender EOM and has its polarization matched to that of the resonant mode using a polarization
controller. (b) The measured powers input into the tapered fibers in both directions. Inputs A and
B are both amplitude modulated by the same amount, but with B having a positive offset in order to
suppress the output when both inputs are HIGH. (c) The measured output field, which can be seen
as HIGH only when input A is HIGH and input B is LOW, showing the correct operation of an A&B
gate. When both inputs are HIGH the output is not fully suppressed, which can be seen by the slight
increase between 0.5 and 1 ms [214]. Copyright 2020 IEEE.

intracavity enhancement of pump energy. Using the FCD effect in Si, the AND and NAND functions
at 310 Mbit/s rate were achieved with 10-dB extinction ratio and 2 mW average power consumption.
In 2020, Moroney et al. demonstrated an all-optical universal logic gate using counter-propagating light
waves at the same operating frequency [214], as shown in Figure 20. A high Q-factor (2 × 108) fused
silica microrod resonator acts as the nonlinear medium. Kerr interaction between the two counter-
propagating light waves leads to an intensity dependent appreciable refractive index change of the
microresonator, which induces a splitting between the resonance frequencies for the two propagating
directions. Arbitrary input signals at a power difference of 11 dB between output “1” and “0” states
were demonstrated. This method works regardless of the choice of input ports. Accordingly, the
gate can be reconfigured to work in different directions with minimal changes required. Despite the
laboratory success, the fact that high requirements of robustness and mass fabrication still prevent the
commercialization of microresonator-based AOLGs.

On the platform of PhCWs, Jandieri et al. numerically proposed an all-optical multiple-input AND
gate on a coupled Kerr-type nonlinear air hole PhCW (C-PCW) in 2018 [215]. The gate can be modified
for an all-optical multiple-input OR gate. In 2020, Kumar and Sen numerically studied all-optical NOT
gate by using a PhCW-based nonlinear Mach-Zehnder interferometer. Silicon-nc/SiO2 slot structure
comprised the nonlinear arm of the MZI [216]. The device worked in the power range of 28 ∼ 60 mW at
a pulse width of 3 ps. The overall dimension of the device could be only ∼ 112 × 7µm2. Tolerances of
the fabrication defects were also analyzed by introducing random variations in the positions and radius
of the air holes. In 2020, Vakhtang et al. presented a conceptual study on the realization of functional
and easily scalable all-optical NOT, AND, and NAND logic gates using bandgap solitons in coupled
PhCWs [217]. Taking the all-optical NOT logic gate as an example, the schematic view of the structure
consisting of three symmetric coupled PhCWs is shown in Figure 21. A CW signal, whose electric field
is polarized parallel to the slab plane, with a normalized amplitude of A = 0.956 was launched into the
coupled PhCWs through the middle Port-2. This port can be viewed as an “enable pin” of the NOT
logic gate in which the presence of the CW signal corresponds to the “on” instruction that is common
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(a)

(b)

(c)

(d) (e)

Figure 21. All-optical NOT logic gate: (a) three Gaussian pulses with amplitude of 0.52, full duration
at half maximum (FDHM) of 2.22 ps and repetition time of 30.86 ps are launched into Port 1; (b) a CW
with amplitude of 0.956 is injected into Port 2; (c) a train with amplitude of 0.812, FDHM of 2.22 ps
and repetition time of 15.43 ps is launched into Port 3; (d) magnetic field distribution of the signal
pulses; (e) magnetic field of the received signal [217]. Copyright 2020 OSA.

in digital electronics. Signal pulses were launched into Port-1, and another probe pulses with higher
amplitude and half of the period were launched into Port-3. The output signal from Port-2 is the part
of the probe pulses that does not overlap with the signal pulses, thus achieved the NOT gate operation.

QD-SOA is another candidate for chip-scale AOSP, which has compact volume and harnesses
cross-gain modulation (XGM), cross-polarization modulation (XPolM), and XPM effects to realize logic
functionality. QD-SOA scheme was proposed because the gain-recovery response (usually 10 ∼ 300 ps)
is much faster than the bulk SOAs. In 2013, Dimitriadou et al. numerically proposed an all-optical
XOR gate using QD-SOA assisted by a detuned optical filter [218]. Pulsed signals at two wavelengths
interacted with the QD-SOA and imposed a gain and phase variation on the third CW signal through
XGM and XPM. By setting suitable blue-shifted amount, bandwidths, and shapes, the XOR gate could
be executed with both logical correctness and high quality. In 2019, Kotb et al. numerically proposed
a XOR gate with speeds up to Tbit/s. The logic gate was achieved by using QD-SOA based turbo-
switched Mach–Zehnder interferometer [219].

4.3. Ultra-Broadband Radio-Frequency Photonics

Radio-frequency (RF) photonics includes microwave and millimeter wave photonics techniques. The
applications cover the fields of telecommunications, radar, sensing, etc. [220]. The history of RF dates
back to the 1970s, which is in parallel to the development of fiber optics. RF still attracts lots of interests
because numerous new applications have been successively developed, such as ultra-wide-band analog
signal transmission and processing, arbitrary waveform generation, phased arrays, photonic ADCs,
spectral filters, etc. A typical procedure for RF photonics includes the following three steps. First, the
optical carriers are modulated by the ready-for-process RF signal. Then, the optical signal generated
by the modulator is processed in the optical domain. Finally, the optical signal processed is converted
back to RF signal. Conventional methods for RF signal processing based on solid-state Ti:Sapphire
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or fiber lasers have little room for improvement. The repetition rate and central frequency of solid-
state or fiber laser cannot be adjusted flexibly, which is crucial for the arbitrary waveform generation.
New types of source such as microresonator-based Kerr microcomb are a promising candidate to replace
conventional multi-wavelength sources for chip-scale RF photonics [221–225], whose comb tooth interval
can be flexibly controlled within 10 GHz ∼ 1THz to fulfill the RF scale.

RF photonics true time delay lines (TTDLs) which are the basic unit in the modern radar and
communications systems, can be improved as the number of delay channels increases. Ultra-broadband
RF photonics has been applied in TTDLs [226] in which a Kerr microcomb source generated in
microresonator provided more than 81 wavelength channels over the C band for microwave signal
processing. As a result, not only the performance can be improved, but also the size can be remarkably
reduced [227]. This microring has a radius of 592 µm with a free spectral range of 0.4 nm, i.e., ∼ 49 GHz.
Due to the ultralow loss of the microring, the resonance linewidth is only 1.2 pm around 1550 nm,
resulting in a Q factor as high as 1.2×106. In 2018, Xu et al. proposed and experimentally demonstrated
RF photonics channelizers using a Kerr microcomb source [228]. With an RF channelizing bandwidth
of 90 GHz, a high RF spectral slicing resolution of 1.04 GHz and RF performance up to 19 GHz were
experimentally achieved. The operating principle of the RF photonics channelizers is to slice the input
RF spectrum into multiple segments, and then a bandwidth within the capability of digital electronics
will exist in each segment, so that digital tools can process the analog RF signals. Through electro-
optical modulators, the RF spectra are multicasted in all shaped microcomb wavelength channels. Then,
a periodic optical filter slices the spectra. Eventually, all channels are separated in demultiplexers and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 22. Schematic diagram of (a) 200 GHz-FSR and (b) 49 GHz-FSR microring. (c) SEM image
of the cross-section of 200 GHz microring before depositing silica as upper cladding, optical spectra of
(d) the primary, (e) secondary combs, (f) Kerr microcomb with 300 nm span, (g) shaped optical comb
for channelizer with less than 0.5 dB unflatness, (h) 20 and (i) selected 4 comb lines modulated by RF
signals [228]. Copyright 2018 OSA.
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converted into the electrical domain for further processing. Figure 22 shows the active microring with
135 µm radius utilized, along with the performance of Kerr microcomb generation and channelization.
The Kerr microcomb generated is rather broad, leading to 20 comb lines (channels) covering the whole
C-band. The comb lines were then shaped to uniform channel weights and served as multi-wavelength
carriers. A phase modulator was then followed to multicast the input RF signal onto each of the comb
lines to complete the channelization process.

Quite recently, Hu et al. experimentally demonstrated all-optical reconfigurable RF filters by using
soliton state Kerr microcombs [229]. Reconfigurability (shifting the filter passband frequency) was
achieved by flexible manipulation of the spectral interference pattern of two-soliton state through
controlling the temporal interval between the two solitons. The proposed RF filters have no additional
pulse-shaping unit. The synthesized RF filters could be all optically reconfigured through the versatile
soliton states switching. The perfect soliton crystals were triggered in a deterministic way to multiply
the comb line spacing so that RF passband filtering frequencies can be divided. Figure 23 shows the
schematic diagram of the reconfigurable RF photonic filters and the Kerr microcomb generation.

(a)

(b) (c)

Figure 23. (a) The conceptual setup includes four parts: microcomb generation, RF signal
upconversion, dispersive propagation, and photodetection. ECDL means external cavity diode laser,
MZM means Mach-Zehnder modulator, PD means photodiode, VNA means vector network analyzer.
Different RF filters are synthesized based on soliton state: (1) single-soliton-based RF filter with a
passband centered at fFSR (blue); (2) perfect soliton crystals of N equally spaced solitons within
one round-trip based RF filters with a passband centered at fFSR/N (green, N = 4 is shown); (3)
two-soliton microcomb-based RF filters with a passband centered at fFSRα/360◦ (orange), (α = 90◦
is shown). (b) Simulated stability diagram of LLE involving the experimental avoided mode crossing
(AMX) condition. Four different stability regions are listed: modulation instability (MI, blue), breathers
(red), spatio-temporal and transient chaos (chaos, yellow), and stable dissipative Kerr soliton (DKS,
green). (c) Examples of experimentally generated spectra at resonance of 1555.1 nm: (1) single-soliton,
(2) perfect soliton crystals (N = 4), and (3) two-soliton microcomb (α = 132.7◦) [229]. Copyright 2020
Nature Publishing Group.
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5. SUMMARY AND OUTLOOK

In this paper, we have reviewed progress on applications of coherent sources generation, pulse shaping,
and all-optical signal processing using χ(3) nonlinear effects in MNPWs. There are still broad
opportunities for future studies. For example, flattened and broadband SC generation beyond 8µm
with reasonable conversion efficiency (or spectrum brightness) is still lacking on chip-scale platforms.
Harnessing fully-fiber-based femtosecond pump sources instead of the solid-state sources is step forward
for on-chip SC sources satisfying field-deployable, but is still rarely studied. Generation of on-chip
Kerr soliton microcomb, especially the single soliton microcomb, in the UVR, VR, and deep MIR
(> 4µm) regions remains challenging. The reported works of on-chip intermodal FWM is still confined
to the well-established bands. The great potential on invading the new bands is waiting to be
further explored. Experimental realization of on-chip pulse compression with factor larger than 10
has not been reported due to the high loss and short waveguide length of MNPWs. There is still no
experimental demonstration of self-similar compression reported so far. For the on-chip AOSP, mass
and reconfigurable functionalities assemble on a single chip is the focus of future study. Accompanied
with the assistance of AI computing sciences such as machine learning and deep learning, on-chip χ(3)

based AOSP can be more powerful and will undoubtedly contribute to the key units of future monolithic
AI photonics chip.

Waveguides made up by newly developed nonlinear materials are being explored to pave the way
for on-chip integratable nonlinear photonic circuits (PICs). Besides the traditional nonlinear materials
with strong χ(3) nonlinearity like Group IV semiconductors (Si, Ge, and their derivant), other materials
like SiC [230], nano-LiNbO3 [231], and Tantala (Ta2O5) [232] are also explored. These heterogeneous
nonlinear materials could be combined to constitute hybrid nonlinear optical platforms. As a result, the
power efficiency of optical devices can be improved. In addition, multiple zero dispersion points which
can be obtained in hybrid MNPWs in the MIR regime is an important technology for flattened and
broadband MIR SC generation [233, 234]. The nano-LiNbO3 MNPW has become a research highlight
because it can be flexibly controlled by multi-physics fields such as acoustic, thermal, and electric
fields [235, 236].

Looking into the future, χ(3) nonlinearity will be probably investigated in new materials and
structures. These materials include the two-dimensional (2D) layered materials [237], epsilon-near-
zero (ENZ) materials [238], and plasmonic materials [239]. All these materials are compatible with
CMOS foundry because they can be dealt to be very thin to the sub-wavelength scale. The 2D
layered materials exhibit giant nonlinearities. They have already enabled diverse new photonic devices
fundamentally different from those built upon traditional SiO2, Si, and chalcogenide platforms. The
typical 2D layered materials include graphene [240], oxide graphene [241], MoS2 [242], etc. An ENZ
material can be understood as this: for a given change (Δε) in the permittivity, the resulting change
(Δn) in the refractive index n is given by Δn = Δε/(2ε1/2) in a lossless material. This change becomes
large when the permittivity becomes small, which suggests that the ENZ frequencies of the material
should give rise to strong nonlinear properties. A lot of unusual matter under ENZ conditions and their
promise in applications have been reported [243]. The plasmonic platform requires metal layer. The
efficiency of this process depends on the type and nanostructure of the employed metal. The resulting
strong electromagnetic field significantly enhanced the nonlinear processes [244]. χ(3) nonlinearity in
artificial structures such as metasurface is a growing research direction [245]. Metasurface is a class
of structured interfaces whose meta-atoms have spatially varying profiles. This kind of surface can
efficiently modify the light-matter interaction with a single layer of meta-atoms. When the meta-
atoms of 2D or quais-2D metasurfaces are made up of metallic or dielectric resonators, one can control
the photonic characteristic such as polarization, phase, and amplitude at subwavelength resolution is
feasible. In addition, the 2D metasurfaces is so thin that compact optical devices and even less optical
loss is expected. The χ(3) nonlinearity can be enhanced through ensemble of new kinds of materials
and structures. For example, the ENZ material and metasurface can be combined to broaden the
bandwidth of high-nonlinear region [244]. Giant nonlinear response can be realized from plasmonic
metasurfaces [246]. Therefore, 2D layered material, ENZ materials, and plasmonic materials might be
the future media for all-optical signal processing.

Multimode nonlinear optics has been largely studied in the step-index and grade-index multimode
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fibers [247]. Although the theory of pulse propagation in a multimode grade-index fiber has been
studied more than forty years ago [248], the nonlinear interaction was experimentally observed [249] very
recently thanks to the advances in fabrication and computation. Multiple optical modes provide an extra
freedom to explore the nonlinear effects with the regard of the complicated modal interaction along the
propagation. Up to date, multimode optical soliton propagation [250], spatial beam self-cleaning [251],
intermodal nonlinear mixing [252] and geometric parametric instability [253, 254] have been studied in
grade-index and step-index fibers. However, multimode nonlinearity in MNPW platforms has not been
fully investigated because of the large group-velocity mismatch caused by high refractive index contrast.
Tailoring the transverse refractive index distribution of MNPWs to reduce the group-velocity mismatch
is potentially a promising way towards the study of multimode nonlinearity in MNPWs. Chip-scale
integrated quantum photonics circuits provide implementation paths for the quantum computation,
quantum communication, and quantum memory [255]. As a fundamental building block of quantum
photonic circuits, single-photon sources have been generated by FWM Bragg scattering [256]. There
will be more and more interesting applications of χ(3) nonlinearities in newly emerged on-chip materials
and platforms, which in turn, promotes the research progress of χ(3) nonlinearities.
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