14 research outputs found

    He-accreting WDs: AM CVn stars with WD donors

    Get PDF
    We study the physical and evolutionary properties of the `white dwarf (WD) family' of AM CVn stars by computing realistic models of interacting double-degenerate systems. We evaluate self-consistently both the mass-transfer rate from the donor, as determined by gravitational wave emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of dot{M} after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (Mdon, Macc), is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass-transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of dot{M} the accretors enter directly the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if the physical conditions suitable for a dynamical event are never attained. When the mass accretion rate decreases below (2-3) × 10-8 M☉ yr-1, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SNe .Ia or Type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected

    The balance of power: accretion and feedback in stellar mass black holes

    Full text link
    In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture Notes in Physics. Springer 201

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Fun for Two

    Get PDF
    Contains fulltext : 156118.pdf (preprint version ) (Open Access)The Formation of Binary Stars, 10-15 April 2000, Potsdam German

    Galactic population of black holes in detached binaries with low-mass stripped helium stars: The case of LB-1 (LS V+22 25)

    No full text
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We model the Galactic population of detached binaries that harbour black holes with 0.5-1.7 M companions - remnants of case B mass exchange that rapidly cross Hertzsprung gap after the termination of the Roche lobe overflow or as He-shell burning stars. Several such binaries can be currently present in the Galaxy. The range of MBH in them is about 4-10 M, and the orbital periods are tens to hundreds of days. The unique black hole binary LB-1 fits well into this extremely rare class of double stars

    The astrophysics of ultra-compact binaries

    Get PDF
    This white paper briefly describes the astrophysics of ultra-compact binaries, with emphasis of the challenges and opportunities in the next decade.Comment: White paper for the the National Academies Astro2010 decadal surve

    Host Plant Records for Fruit Flies (Diptera: Tephritidae: Dacini) in the Pacific Islands: 2. Infestation Statistics on Economic Hosts

    Get PDF
    Detailed host records are listed for 39 species of Bactrocera and 2 species of Dacus fruit flies, infesting 98 species of commercial and edible fruits in the Pacific Island Countries and Territories, based on sampling and incubating in laboratory almost 13,000 field collected samples, or over 380,000 fruits. For each host-fly-country association, quantitative data are presented on the weight and number of fruits collected, the proportion of infested samples, the number of adult flies emerged per kg of fruits and, whenever available, the percentage of individual fruits infested. All the published records of each fly-host-country association are cited and erroneous or dubious published records are rectified or commented. Laboratory forced infestation data are also cited and reviewed
    corecore