355 research outputs found

    Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole

    Full text link
    We construct effective-one-body waveform models suitable for data analysis with LISA for extreme-mass ratio inspirals in quasi-circular, equatorial orbits about a spinning supermassive black hole. The accuracy of our model is established through comparisons against frequency-domain, Teukolsky-based waveforms in the radiative approximation. The calibration of eight high-order post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional amplitude agreement of better than 1 radian and 1 % respectively over a period between 2 and 6 months depending on the system considered. This agreement translates into matches higher than 97 % over a period between 4 and 9 months, depending on the system. Better agreements can be obtained if a larger number of calibration parameters are included. Higher-order mass ratio terms in the effective-one-body Hamiltonian and radiation-reaction introduce phase corrections of at most 30 radians in a one year evolution. These corrections are usually one order of magnitude larger than those introduced by the spin of the small object in a one year evolution. These results suggest that the effective-one-body approach for extreme mass ratio inspirals is a good compromise between accuracy and computational price for LISA data analysis purposes.Comment: 21 pages, 8 figures, submitted to Phys. Rev.

    Metric of a tidally perturbed spinning black hole

    Full text link
    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar ψ0\psi_0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, the perturbed metric can model rapidly spinning holes. We first generate a potential by acting with a differential operator on ψ0\psi_0. From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the ingoing radiation gauge. We provide explicit analytic formulae for this metric perturbation in spherical Kerr-Schild coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that describe the time evolution of the perturbation produced by the external universe. In order to take the metric accurate far away from the hole, these tidal tensors should be determined by asymptotically matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here could be useful in initial data constructions to describe the metric near the horizons of a binary system of spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption of mass and angular momentum by a Kerr black hole when external processes generate gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected. v3: corrected typo in Eq. (35) and (57

    Barbero-Immirzi field in canonical formalism of pure gravity

    Full text link
    The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory are briefly discussed.Comment: 10 page

    Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): evaluation using an endogenous HCC model

    Get PDF
    Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.The present study was supported in part by grants from The James S. McDonnell Foundation, National Cancer Institute Grant R01 CA138540-01A1 (DS), National Institutes of Health Grant R01 CA134721 (PBF), the Samuel Waxman Cancer Research Foundation (SWCRF) (DS and PBF), National Institutes of Health Grants R01 GM078240 and P50 GM67041 (SES), the Johnson and Johnson Clinical Innovation Award (UH), and the Boston University Ignition Award (UH). JLSW was supported by Alnylam Pharmaceuticals, Inc. DS is the Harrison Endowed Scholar in Cancer Research and Blick scholar. PBF holds the Thelma Newmeyer Corman Chair in Cancer Research. The authors acknowledge Dr. Lauren E. Brown (Dept. Chemistry, Boston University) for the synthesis of FQI1 and FQI2, and Lucy Flynn (Dept. Biology, Boston University) for initially identifying G2/M effects caused by FQI1. (James S. McDonnell Foundation; R01 CA138540-01A1 - National Cancer Institute; R01 CA134721 - National Institutes of Health; R01 GM078240 - National Institutes of Health; P50 GM67041 - National Institutes of Health; Samuel Waxman Cancer Research Foundation (SWCRF); Johnson and Johnson Clinical Innovation Award; Boston University Ignition Award; Alnylam Pharmaceuticals, Inc.)Published versio

    Testing Alternative Theories of Gravity using LISA

    Full text link
    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm length, but is inversely proportional to the LISA position noise error. Lower bounds on the graviton Compton wavelength ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year observations of massive binary black hole inspirals at cosmological distances (3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent of these parameters because of the dominance of white-dwarf confusion noise in the relevant part of the frequency spectrum. These bounds improve and extend earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit

    Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries

    Get PDF
    We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.Comment: 10 pages, to appear in Class. Quantum Grav. GWDAW13 Proceedings Special Issue, v2: no typos conjectur

    The scientific potential of space-based gravitational wave detectors

    Full text link
    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 10 thousand to 10 million solar masses, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ~2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics, the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one additional referenc

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu

    Generalized Chern-Simons Modified Gravity in First-Order Formalism

    Full text link
    We propose a generalization of Chern-Simons (CS) modified gravity in first-order formalism. CS modified gravity action has a term that comes from the chiral anomaly which is Pontryagin invariant. First-order CS modified gravity is a torsional theory and in a space-time with torsion the chiral anomaly includes a torsional topological term called Nieh-Yan invariant. We generalize the CS modified gravity by adding the Nieh-Yan term to the action and find the effective theory. We compare the generalized theory with the first-order CS modified gravity and comment on the similarities and differences.Comment: 8 pages, an author added, new paragraphs, comments and references added, published in Gen. Relativ. Gravi

    GOATOOLS: A Python library for Gene Ontology analyses.

    Get PDF
    The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a "flat" list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools
    • 

    corecore