6 research outputs found

    Causal link between gut microbiota and four types of pancreatitis: a genetic association and bidirectional Mendelian randomization study

    Get PDF
    BackgroundA number of recent observational studies have indicated a correlation between the constitution of gut microbiota and the incidence of pancreatitis. Notwithstanding, observational studies are unreliable for inferring causality because of their susceptibility to confounding, bias, and reverse causality, the causal relationship between specific gut microbiota and pancreatitis is still unclear. Therefore, our study aimed to investigate the causal relationship between gut microbiota and four types of pancreatitis.MethodsAn investigative undertaking encompassing a genome-wide association study (GWAS) comprising 18,340 participants was undertaken with the aim of discerning genetic instrumental variables that exhibit associations with gut microbiota, The aggregated statistical data pertaining to acute pancreatitis (AP), alcohol-induced AP (AAP), chronic pancreatitis (CP), and alcohol-induced CP (ACP) were acquired from the FinnGen Consortium. The two-sample bidirectional Mendelian randomization (MR) approach was utilized. Utilizing the Inverse-Variance Weighted (IVW) technique as the cornerstone of our primary analysis. The Bonferroni analysis was used to correct for multiple testing, In addition, a number of sensitivity analysis methodologies, comprising the MR-Egger intercept test, the Cochran’s Q test, MR polymorphism residual and outlier (MR-PRESSO) test, and the leave-one-out test, were performed to evaluate the robustness of our findings.ResultsA total of 28 intestinal microflora were ascertained to exhibit significant associations with diverse outcomes of pancreatitis. Among them, Class Melainabacteria (OR = 1.801, 95% CI: 1.288–2.519, p = 0.008) has a strong causality with ACP after the Bonferroni-corrected test, in order to assess potential reverse causation effects, we used four types of pancreatitis as the exposure variable and scrutinized its impact on gut microbiota as the outcome variable, this analysis revealed associations between pancreatitis and 30 distinct types of gut microflora. The implementation of Cochran’s Q test revealed a lack of substantial heterogeneity among the various single nucleotide polymorphisms (SNP).ConclusionOur first systematic Mendelian randomization analysis provides evidence that multiple gut microbiota taxa may be causally associated with four types of pancreatitis disease. This discovery may contribute significant biomarkers conducive to the preliminary, non-invasive identification of Pancreatitis. Additionally, it could present viable targets for potential therapeutic interventions in the disease’s treatment

    PECSS: Pulmonary Embolism Comprehensive Screening Score to safely rule out pulmonary embolism among suspected patients presenting to emergency department

    No full text
    Abstract Background Pulmonary embolism is a severe cardiovascular disease and can be life-threatening if left untreated. However, the detection rate of pulmonary embolism using existing pretest probability scores remained relatively low and clinical rule out often relied on excessive use of computed tomographic pulmonary angiography. Methods We retrospectively collected data from pulmonary embolism suspected patients in Zhongshan Hospital from July 2018 to October 2022. Pulmonary embolism diagnosis and severity grades were confirmed by computed tomographic pulmonary angiography. Patients were randomly divided into derivation and validation set. To construct the Pulmonary Embolism Comprehensive Screening Score (PECSS), we first screened for candidate clinical predictors using univariate logistic regression models. These predictors were then included in a searching algorithm with indicators of Wells score, where a series of points were assigned to each predictor. Optimal D-Dimer cutoff values were investigated and incorporated with PECSS to rule out pulmonary embolism. Results In addition to Wells score, PECSS identified seven clinical predictors (anhelation, abnormal blood pressure, in critical condition when admitted, age > 65 years and high levels of pro-BNP, CRP and UA,) strongly associated with pulmonary embolism. Patients can be safely ruled out of pulmonary embolism if PECSS ≤ 4, or if 4 < PECSS ≤ 6 and D-Dimer ≤ 2.5 mg/L. Comparing with Wells approach, PECSS achieved lower failure rates across all pulmonary embolism severity grades. These findings were validated in the held-out validation set. Conclusions Compared to Wells score, PECSS approaches achieved lower failure rates and better compromise between sensitivity and specificity. Calculation of PECSS is easy and all predictors are readily available upon emergency department admission, making it widely applicable in clinical settings. Trail registration The study was retrospectively registered (No. CJ0647) and approved by Human Genetic Resources in China in April 2022. Ethical approval was received from the Medical Ethics Committee of Zhongshan Hospital (NO.B2021-839R)

    Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites

    No full text
    This paper presents the performance analysis of CentiSpace low earth orbit (LEO) experiment satellites. Distinguishing them from other LEO navigation augmentation systems, the co-time and co-frequency (CCST) self-interference suppression technique is employed in CentiSpace to mitigate significant self-interference caused by augmentation signals. Consequently, CentiSpace exhibits the capability of receiving navigation signals from the Global Navigation Satellite System (GNSS) while simultaneously broadcasting augmentation signals within the same frequency bands, thus ensuring excellent compatibility for GNSS receivers. CentiSpace is a pioneering LEO navigation system to successfully complete in-orbit verification of this technique. Leveraging the on-board experiment data, this study analyzes the performance of space-borne GNSS receivers equipped with self-interference suppression and evaluates the quality of navigation augmentation signals. The results show that CentiSpace space-borne GNSS receivers are capable of covering more than 90% visible GNSS satellites and the precision of self-orbit determination is at the centimeter level. Furthermore, the quality of augmentation signals meets the requirements outlined in the BDS interface control documents. These findings underscore the potential of the CentiSpace LEO augmentation system for the establishment of global integrity monitoring and GNSS signal augmentation. Moreover, these results contribute to subsequent research on LEO augmentation techniques

    A deep learning model using hyperspectral image for EUS‐FNA cytology diagnosis in pancreatic ductal adenocarcinoma

    No full text
    Abstract Background and Aims Endoscopic ultrasonography‐guided fine‐needle aspiration/biopsy (EUS‐FNA/B) is considered to be a first‐line procedure for the pathological diagnosis of pancreatic cancer owing to its high accuracy and low complication rate. The number of new cases of pancreatic ductal adenocarcinoma (PDAC) is increasing, and its accurate pathological diagnosis poses a challenge for cytopathologists. Our aim was to develop a hyperspectral imaging (HSI)‐based convolution neural network (CNN) algorithm to aid in the diagnosis of pancreatic EUS‐FNA cytology specimens. Methods HSI images were captured of pancreatic EUS‐FNA cytological specimens from benign pancreatic tissues (n = 33) and PDAC (n = 39) prepared using a liquid‐based cytology method. A CNN was established to test the diagnostic performance, and Attribution Guided Factorization Visualization (AGF‐Visualization) was used to visualize the regions of important classification features identified by the model. Results A total of 1913 HSI images were obtained. Our ResNet18‐SimSiam model achieved an accuracy of 0.9204, sensitivity of 0.9310 and specificity of 0.9123 (area under the curve of 0.9625) when trained on HSI images for the differentiation of PDAC cytological specimens from benign pancreatic cells. AGF‐Visualization confirmed that the diagnoses were based on the features of tumor cell nuclei. Conclusions An HSI‐based model was developed to diagnose cytological PDAC specimens obtained using EUS‐guided sampling. Under the supervision of experienced cytopathologists, we performed multi‐staged consecutive in‐depth learning of the model. Its superior diagnostic performance could be of value for cytologists when diagnosing PDAC
    corecore