3,154 research outputs found

    Superconducting phase transitions in frustrated Josephson-junction arrays on a dice lattice

    Full text link
    Transport measurements are carried out on dice Josephson-junction arrays with the frustration index f=1/3f=1/3 and 1/2 which possess, within the limit of the XYXY model, an accidental degeneracy of the ground states as a consequence of the formation of zero-energy domain walls. The measurements demonstrate that both the systems undergo a phase transition to a superconducting vortex-ordered state at considerably high temperatures. The experimental findings are in apparent contradiction with the theoretical expectation that frustration effects in the f=1/3f=1/3 system are particularly strong enough to suppress a vortex-ordering transition down to near zero temperature. The data for f=1/2f=1/2 are more consistent with theoretical evaluations. The agreement between the experiments and the Monte Carlo simulations of a XYXY model for f=1/3f=1/3 suggests that the order-from-disorder mechanism for the removal of an accidental degeneracy may still be effective in the f=1/3f=1/3 system. The transport data also reveal that the dice arrays with zero-energy domain walls experience a much slower critical relaxation than other frustrated arrays only with finite-energy walls.Comment: 4 pages, 4 figure

    Superconducting transition of a two-dimensional Josephson junction array in weak magnetic fields

    Full text link
    The superconducting transition of a two-dimensional (2D) Josephson junction array exposed to weak magnetic fields has been studied experimentally. Resistance measurements reveal a superconducting-resistive phase boundary in serious disagreement with the theoretical and numerical expectations. Critical scaling analyses of the IVIV characteristics indicate contrary to the expectations that the superconducting-to-resistive transition in weak magnetic fields is associated with a melting transition of magnetic-field-induced vortices directly from a pinned-solid phase to a liquid phase. The expected depinning transition of vortices from a pinned-solid phase to an intermediate floating-solid phase was not observed. We discuss effects of the disorder-induced random pinning potential on phase transitions of vortices in a 2D Josephson junction array.Comment: 9 pages, 7 figures (EPS+JPG format), RevTeX

    Choreo-graphy: The Deinstitutionalisation of the Body and the Event of Writing

    Get PDF
    Choreography is commonly understood as a technical term that describes what the choreographer does in a literal sense: writing the dancing bodies according to a masterā€™s set narrative. However, recent events in contemporary choreography suggest a different possibility of articulating choreography as a technique of offering rather than a technique of domination over other bodies. Through an analysis of some groundbreaking choreographic experiments by Xavier Le Roy, JĆ©rĆ“me Bel, Boris Charmatz, Eszter Salamon, Christine De Smedt, Jan Ritsema, and Anne Teresa De Keersmaeker, which have gained visibility since the late 1990s in the global art scene beyond the Western institution of dance, this thesis aims to theorise this shift in what choreography is and can be. In an attempt to theorise choreography as a technique of offering, this thesis illuminates the relationship between some of the tactical operations in contemporary choreographic experiments and the post-structuralist rethinking of power, institution, the body, subjectivity and knowledge production. Turning to Michel Foucaultā€™s rethinking of power and Jacques RanciĆØreā€™s challenge of the position of mastery, it aims to articulate the tactical deconstructions of the choreographer-master in contemporary choreographic experiments. Borrowing Hannah Arendtā€™s notion of a ā€˜space of appearanceā€™ and Jean-Luc Nancyā€™s rethinking of body, it attempts to articulate how choreography as a spatiotemporal technique offers spaces of appearances for other bodies. This thesis also highlights a different possibility of articulating choreography by positioning it in the critical field called the ā€˜curatorialā€™. Reflecting the contemporary disciplinary crisis in art, where the given methodologies and tools no longer do the job that they used to do, there are increasing demands from cultural producers for different modes of operations in order to open up new critical possibilities of interdisciplinary research. In thinking through Le Roy and De Keersmaekerā€™s ā€˜choreographedā€™ exhibitions, this thesis aims to rethink choreography in terms of the curatorial. This also means to rethink the curatorial in terms of choreography, where both theatre-making and exhibition-making can be rearticulated as a matter of body in relation to other bodies

    Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3

    Get PDF
    How a certain ground state of complex physical systems emerges, especially in two-dimensional materials, is a fundamental question in condensed-matter physics. A particularly interesting case is systems belonging to the class of XY Hamiltonian where the magnetic order parameter of conventional nature is unstable in two-dimensional materials leading to a Berezinskii-Kosterlitz-Thouless transition. Here, we report how the XXZ-type antiferromagnetic order of a magnetic van der Waals material, NiPS3, behaves upon reducing the thickness and ultimately becomes unstable in the monolayer limit. Our experimental data are consistent with the findings based on renormalization group theory that at low temperatures a two-dimensional XXZ system behaves like a two-dimensional XY one, which cannot have a long-range order at finite temperatures. This work provides experimental examination of the XY magnetism in the atomically thin limit and opens new opportunities of exploiting these fundamental theorems of magnetism using magnetic van der Waals materials.Comment: 57 pages, 24 figures (including Supplementary Information

    Inter-Device Agreement of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Cirrus HD OCT

    Get PDF
    PURPOSE: To assess the inter-device agreement of peripapillary retinal nerve fiber layer (RNFL) thickness measurements by 2 spectral domain Cirrus HD optical coherence tomography (OCT) devices in healthy Korean subjects. METHODS: Eleven eyes of 11 healthy volunteers were enrolled in the present study. Each eye was scanned with the Optic Disc Cube 200 x 200 scan of 2 Cirrus HD OCT devices for peripapillary RNFL thickness calculation. The inter-device agreements of the 2 Cirrus HD OCTs for average, quadrant, and clock-hour RNFL thickness values were determined with Wilcoxon signed rank test, Friedman test, Cronbach's alpha (alpha), intraclass correlation coefficient (ICC), coefficient of variation (COV), and Bland-Altman plot. RESULTS: The mean age of the participants was 25.82 +/- 3.28 years and all had a 0.00 logarithm of the minimum angle of resolution of best-corrected visual acuity. The signal strengths of scans from the 2 Cirrus HD OCT were not significantly different (p = 0.317). The inter-device agreement of average RNFL thickness was excellent (alpha, 0.940; ICC, 0.945; COV, 2.45 +/- 1.52%). However, the agreement of nasal quadrant RNFL thickness was not very good (alpha, 0.715; ICC, 0.716; COV, 5.72 +/- 4.64%). Additionally, on the Bland-Atman plot, the extent of agreement of the 2 Cirrus HD OCTs for RNFL thickness was variable according to scanned sectors. CONCLUSIONS: The inter-device agreement of 2 spectral domain Cirrus HD OCT devices for peripapillary RNFL thickness measurements was generally excellent but variable according to the scanned area. Thus, physicians should consider this fact before judging a change of RNFL thicknesses if they were measured by different OCT devices.ope

    Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O<sub>2</sub>) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-ĪŗB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells.</p> <p>Results</p> <p>After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-ĪŗB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-ĪŗB, while BDNF suppressed phosphorylation of ERK and p38.</p> <p>Conclusion</p> <p>Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-ĪŗB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.</p

    A novel approach to fabricate carbon-sphere-intercalated holey graphene electrode for high-energy-density electrochemical capacitors

    Get PDF
    Desirable porous structure and huge ion-accessible surface area are crucial for rapid electronic and ionic pathway electrodes in high-performance graphene-based electrochemical capacitors. However, graphene nanosheets tend to aggregate and restack because of van der Waals interaction among graphene sheets, resulting in the loss of ion-accessible surface area and unsatisfactory electrochemical performance. To resolve this daunting challenge, a novel approach is developed for the self-assembly of holey graphene sheets intercalated with carbon spheres (H-GCS) to obtain freestanding electrodes by using a simple vacuum filtration approach and a subsequent KOH activation process. Through the introduction of carbon spheres as spacers, the restacking of reduced graphene oxide (rGO) sheets during the filtration process is mitigated efficiently. Pores on rGO sheets produced by subsequent KOH activation also provide rapid ionic diffusion kinetics and high ion-accessible electrochemical surface area, both of which favor the formation of electric double-layer capacitance. Furthermore, a higher degree of graphitization of CSs in H-GCS thin film improves the electrical conductivity of the H-GCS electrode. The H-GCS electrode exhibits 207.1 F gāˆ’1 of specific capacitance at a current density of 1 A gāˆ’1 in 6 M KOH aqueous electrolyte. Moreover, the symmetric electrochemical capacitor assembled with H-GCS electrodes and organic electrolyte is capable of delivering a maximum energy density of 29.5 Wh kgāˆ’1 and a power density of 22.6 kW kgāˆ’1
    • ā€¦
    corecore